1000 resultados para Pulsating frequency
Resumo:
PURPOSE: To explore the effects of glaucoma and aging on low-spatial-frequency contrast sensitivity by using tests designed to assess performance of either the magnocellular (M) or parvocellular (P) visual pathways. METHODS: Contrast sensitivity was measured for spatial frequencies of 0.25 to 2 cyc/deg by using a published steady- and pulsed-pedestal approach. Sixteen patients with glaucoma and 16 approximately age-matched control subjects participated. Patients with glaucoma were tested foveally and at two midperipheral locations: (1) an area of early visual field loss, and (2) an area of normal visual field. Control subjects were assessed in matched locations. An additional group of 12 younger control subjects (aged 20-35 years) were also tested. RESULTS: Older control subjects demonstrated reduced sensitivity relative to the younger group for the steady (presumed M)- and pulsed (presumed P)-pedestal conditions. Sensitivity was reduced foveally and in the midperiphery across the spatial frequency range. In the area of early visual field loss, the glaucoma group demonstrated further sensitivity reduction relative to older control subjects across the spatial frequency range for both the steady- and pulsed-pedestal tasks. Sensitivity was also reduced in the midperipheral location of "normal" visual field for the pulsed condition. CONCLUSIONS: Normal aging results in a reduction of contrast sensitivity for the low-spatial-frequency-sensitive components of both the M and P pathways. Glaucoma results in a further reduction of sensitivity that is not selective for M or P function. The low-spatial-frequency-sensitive channels of both pathways, which are presumably mediated by cells with larger receptive fields, are approximately equivalently impaired in early glaucoma.
Resumo:
CFO and I/Q mismatch could cause significant performance degradation to OFDM systems. Their estimation and compensation are generally difficult as they are entangled in the received signal. In this paper, we propose some low-complexity estimation and compensation schemes in the receiver, which are robust to various CFO and I/Q mismatch values although the performance is slightly degraded for very small CFO. These schemes consist of three steps: forming a cosine estimator free of I/Q mismatch interference, estimating I/Q mismatch using the estimated cosine value, and forming a sine estimator using samples after I/Q mismatch compensation. These estimators are based on the perception that an estimate of cosine serves much better as the basis for I/Q mismatch estimation than the estimate of CFO derived from the cosine function. Simulation results show that the proposed schemes can improve system performance significantly, and they are robust to CFO and I/Q mismatch.