999 resultados para Pseudo-Bayesian Design
Resumo:
Early phase clinical trial designs have long been the focus of interest for clinicians and statisticians working in oncology field. There are several standard phse I and phase II designs that have been widely-implemented in medical practice. For phase I design, the most commonly used methods are 3+3 and CRM. A newly-developed Bayesian model-based mTPI design has now been used by an increasing number of hospitals and pharmaceutical companies. The advantages and disadvantages of these three top phase I designs have been discussed in my work here and their performances were compared using simulated data. It was shown that mTPI design exhibited superior performance in most scenarios in comparison with 3+3 and CRM designs. ^ The next major part of my work is proposing an innovative seamless phase I/II design that allows clinicians to conduct phase I and phase II clinical trials simultaneously. Bayesian framework was implemented throughout the whole design. The phase I portion of the design adopts mTPI method, with the addition of futility rule which monitors the efficacy performance of the tested drugs. Dose graduation rules were proposed in this design to allow doses move forward from phase I portion of the study to phase II portion without interrupting the ongoing phase I dose-finding schema. Once a dose graduated to phase II, adaptive randomization was used to randomly allocated patients into different treatment arms, with the intention of more patients being assigned to receive more promising dose(s). Again simulations were performed to compare the performance of this innovative phase I/II design with a recently published phase I/II design, together with the conventional phase I and phase II designs. The simulation results indicated that the seamless phase I/II design outperform the other two competing methods in most scenarios, with superior trial power and the fact that it requires smaller sample size. It also significantly reduces the overall study time. ^ Similar to other early phase clinical trial designs, the proposed seamless phase I/II design requires that the efficacy and safety outcomes being able to be observed in a short time frame. This limitation can be overcome by using validated surrogate marker for the efficacy and safety endpoints.^
Resumo:
The Phase I clinical trial is considered the "first in human" study in medical research to examine the toxicity of a new agent. It determines the maximum tolerable dose (MTD) of a new agent, i.e., the highest dose in which toxicity is still acceptable. Several phase I clinical trial designs have been proposed in the past 30 years. The well known standard method, so called the 3+3 design, is widely accepted by clinicians since it is the easiest to implement and it does not need a statistical calculation. Continual reassessment method (CRM), a design uses Bayesian method, has been rising in popularity in the last two decades. Several variants of the CRM design have also been suggested in numerous statistical literatures. Rolling six is a new method introduced in pediatric oncology in 2008, which claims to shorten the trial duration as compared to the 3+3 design. The goal of the present research was to simulate clinical trials and compare these phase I clinical trial designs. Patient population was created by discrete event simulation (DES) method. The characteristics of the patients were generated by several distributions with the parameters derived from a historical phase I clinical trial data review. Patients were then selected and enrolled in clinical trials, each of which uses the 3+3 design, the rolling six, or the CRM design. Five scenarios of dose-toxicity relationship were used to compare the performance of the phase I clinical trial designs. One thousand trials were simulated per phase I clinical trial design per dose-toxicity scenario. The results showed the rolling six design was not superior to the 3+3 design in terms of trial duration. The time to trial completion was comparable between the rolling six and the 3+3 design. However, they both shorten the duration as compared to the two CRM designs. Both CRMs were superior to the 3+3 design and the rolling six in accuracy of MTD estimation. The 3+3 design and rolling six tended to assign more patients to undesired lower dose levels. The toxicities were slightly greater in the CRMs.^
Resumo:
The development of targeted therapy involve many challenges. Our study will address some of the key issues involved in biomarker identification and clinical trial design. In our study, we propose two biomarker selection methods, and then apply them in two different clinical trial designs for targeted therapy development. In particular, we propose a Bayesian two-step lasso procedure for biomarker selection in the proportional hazards model in Chapter 2. In the first step of this strategy, we use the Bayesian group lasso to identify the important marker groups, wherein each group contains the main effect of a single marker and its interactions with treatments. In the second step, we zoom in to select each individual marker and the interactions between markers and treatments in order to identify prognostic or predictive markers using the Bayesian adaptive lasso. In Chapter 3, we propose a Bayesian two-stage adaptive design for targeted therapy development while implementing the variable selection method given in Chapter 2. In Chapter 4, we proposed an alternate frequentist adaptive randomization strategy for situations where a large number of biomarkers need to be incorporated in the study design. We also propose a new adaptive randomization rule, which takes into account the variations associated with the point estimates of survival times. In all of our designs, we seek to identify the key markers that are either prognostic or predictive with respect to treatment. We are going to use extensive simulation to evaluate the operating characteristics of our methods.^
Resumo:
Background: For most cytotoxic and biologic anti-cancer agents, the response rate of the drug is commonly assumed to be non-decreasing with an increasing dose. However, an increasing dose does not always result in an appreciable increase in the response rate. This may especially be true at high doses for a biologic agent. Therefore, in a phase II trial the investigators may be interested in testing the anti-tumor activity of a drug at more than one (often two) doses, instead of only at the maximum tolerated dose (MTD). This way, when the lower dose appears equally effective, this dose can be recommended for further confirmatory testing in a phase III trial under potential long-term toxicity and cost considerations. A common approach to designing such a phase II trial has been to use an independent (e.g., Simon's two-stage) design at each dose ignoring the prior knowledge about the ordering of the response probabilities at the different doses. However, failure to account for this ordering constraint in estimating the response probabilities may result in an inefficient design. In this dissertation, we developed extensions of Simon's optimal and minimax two-stage designs, including both frequentist and Bayesian methods, for two doses that assume ordered response rates between doses. ^ Methods: Optimal and minimax two-stage designs are proposed for phase II clinical trials in settings where the true response rates at two dose levels are ordered. We borrow strength between doses using isotonic regression and control the joint and/or marginal error probabilities. Bayesian two-stage designs are also proposed under a stochastic ordering constraint. ^ Results: Compared to Simon's designs, when controlling the power and type I error at the same levels, the proposed frequentist and Bayesian designs reduce the maximum and expected sample sizes. Most of the proposed designs also increase the probability of early termination when the true response rates are poor. ^ Conclusion: Proposed frequentist and Bayesian designs are superior to Simon's designs in terms of operating characteristics (expected sample size and probability of early termination, when the response rates are poor) Thus, the proposed designs lead to more cost-efficient and ethical trials, and may consequently improve and expedite the drug discovery process. The proposed designs may be extended to designs of multiple group trials and drug combination trials.^
Resumo:
Bridges with deck supported on either sliding or elastomeric bearings are very common in mid-seismicity regions. Their main seismic vulnerabilities are related to the pounding of the deck against abutments or between the different deck elements. A simplified model of the longitudinal behavior of those bridges will allow to characterize the reaction forces developed during pounding using the Pacific Earthquake Engineering Research Center framework formula. In order to ensure the general applicability of the results obtained, a large number of system parameter combinations will be considered. The heart of the formula is the identification of suitable intermediate variables. First, the pseudo acceleration spectral value for the fundamental period of the system (Sa(Ts)) will be used as an intensity measure (IM). This IM will result in a very large non-explained variability of the engineering demand parameter. A portion of this variability will be proved to be related to the relative content of high-frequency energy in the input motion. Two vector-valued IMs including a second parameter taking this energy content into account will then be considered. For both of them, a suitable form for the conditional intensity dependence of the response will be obtained. The question of which one to choose will also be analyzed. Finally, additional issues related to the IM will be studied: its applicability to pulse-type records, the validity of scaling records and the sufficiency of the IM.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.
Resumo:
Road accidents are a very relevant issue in many countries and macroeconomic models are very frequently applied by academia and administrations to reduce their frequency and consequences. The selection of explanatory variables and response transformation parameter within the Bayesian framework for the selection of the set of explanatory variables a TIM and 3IM (two input and three input models) procedures are proposed. The procedure also uses the DIC and pseudo -R2 goodness of fit criteria. The model to which the methodology is applied is a dynamic regression model with Box-Cox transformation (BCT) for the explanatory variables and autorgressive (AR) structure for the response. The initial set of 22 explanatory variables are identified. The effects of these factors on the fatal accident frequency in Spain, during 2000-2012, are estimated. The dependent variable is constructed considering the stochastic trend component.
Resumo:
Los sistemas de seguimiento mono-cámara han demostrado su notable capacidad para el análisis de trajectorias de objectos móviles y para monitorización de escenas de interés; sin embargo, tanto su robustez como sus posibilidades en cuanto a comprensión semántica de la escena están fuertemente limitadas por su naturaleza local y monocular, lo que los hace insuficientes para aplicaciones realistas de videovigilancia. El objetivo de esta tesis es la extensión de las posibilidades de los sistemas de seguimiento de objetos móviles para lograr un mayor grado de robustez y comprensión de la escena. La extensión propuesta se divide en dos direcciones separadas. La primera puede considerarse local, ya que está orientada a la mejora y enriquecimiento de las posiciones estimadas para los objetos móviles observados directamente por las cámaras del sistema; dicha extensión se logra mediante el desarrollo de un sistema multi-cámara de seguimiento 3D, capaz de proporcionar consistentemente las posiciones 3D de múltiples objetos a partir de las observaciones capturadas por un conjunto de sensores calibrados y con campos de visión solapados. La segunda extensión puede considerarse global, dado que su objetivo consiste en proporcionar un contexto global para relacionar las observaciones locales realizadas por una cámara con una escena de mucho mayor tamaño; para ello se propone un sistema automático de localización de cámaras basado en las trayectorias observadas de varios objetos móviles y en un mapa esquemático de la escena global monitorizada. Ambas líneas de investigación se tratan utilizando, como marco común, técnicas de estimación bayesiana: esta elección está justificada por la versatilidad y flexibilidad proporcionada por dicho marco estadístico, que permite la combinación natural de múltiples fuentes de información sobre los parámetros a estimar, así como un tratamiento riguroso de la incertidumbre asociada a las mismas mediante la inclusión de modelos de observación específicamente diseñados. Además, el marco seleccionado abre grandes posibilidades operacionales, puesto que permite la creación de diferentes métodos numéricos adaptados a las necesidades y características específicas de distintos problemas tratados. El sistema de seguimiento 3D con múltiples cámaras propuesto está específicamente diseñado para permitir descripciones esquemáticas de las medidas realizadas individualmente por cada una de las cámaras del sistema: esta elección de diseño, por tanto, no asume ningún algoritmo específico de detección o seguimiento 2D en ninguno de los sensores de la red, y hace que el sistema propuesto sea aplicable a redes reales de vigilancia con capacidades limitadas tanto en términos de procesamiento como de transmision. La combinación robusta de las observaciones capturadas individualmente por las cámaras, ruidosas, incompletas y probablemente contaminadas por falsas detecciones, se basa en un metodo de asociación bayesiana basado en geometría y color: los resultados de dicha asociación permiten el seguimiento 3D de los objetos de la escena mediante el uso de un filtro de partículas. El sistema de fusión de observaciones propuesto tiene, como principales características, una gran precisión en términos de localización 3D de objetos, y una destacable capacidad de recuperación tras eventuales errores debidos a un número insuficiente de datos de entrada. El sistema automático de localización de cámaras se basa en la observación de múltiples objetos móviles y un mapa esquemático de las áreas transitables del entorno monitorizado para inferir la posición absoluta de dicho sensor. Para este propósito, se propone un novedoso marco bayesiano que combina modelos dinámicos inducidos por el mapa en los objetos móviles presentes en la escena con las trayectorias observadas por la cámara, lo que representa un enfoque nunca utilizado en la literatura existente. El sistema de localización se divide en dos sub-tareas diferenciadas, debido a que cada una de estas tareas requiere del diseño de algoritmos específicos de muestreo para explotar en profundidad las características del marco desarrollado: por un lado, análisis de la ambigüedad del caso específicamente tratado y estimación aproximada de la localización de la cámara, y por otro, refinado de la localización de la cámara. El sistema completo, diseñado y probado para el caso específico de localización de cámaras en entornos de tráfico urbano, podría tener aplicación también en otros entornos y sensores de diferentes modalidades tras ciertas adaptaciones. ABSTRACT Mono-camera tracking systems have proved their capabilities for moving object trajectory analysis and scene monitoring, but their robustness and semantic possibilities are strongly limited by their local and monocular nature and are often insufficient for realistic surveillance applications. This thesis is aimed at extending the possibilities of moving object tracking systems to a higher level of scene understanding. The proposed extension comprises two separate directions. The first one is local, since is aimed at enriching the inferred positions of the moving objects within the area of the monitored scene directly covered by the cameras of the system; this task is achieved through the development of a multi-camera system for robust 3D tracking, able to provide 3D tracking information of multiple simultaneous moving objects from the observations reported by a set of calibrated cameras with semi-overlapping fields of view. The second extension is global, as is aimed at providing local observations performed within the field of view of one camera with a global context relating them to a much larger scene; to this end, an automatic camera positioning system relying only on observed object trajectories and a scene map is designed. The two lines of research in this thesis are addressed using Bayesian estimation as a general unifying framework. Its suitability for these two applications is justified by the flexibility and versatility of that stochastic framework, which allows the combination of multiple sources of information about the parameters to estimate in a natural and elegant way, addressing at the same time the uncertainty associated to those sources through the inclusion of models designed to this end. In addition, it opens multiple possibilities for the creation of different numerical methods for achieving satisfactory and efficient practical solutions to each addressed application. The proposed multi-camera 3D tracking method is specifically designed to work on schematic descriptions of the observations performed by each camera of the system: this choice allows the use of unspecific off-the-shelf 2D detection and/or tracking subsystems running independently at each sensor, and makes the proposal suitable for real surveillance networks with moderate computational and transmission capabilities. The robust combination of such noisy, incomplete and possibly unreliable schematic descriptors relies on a Bayesian association method, based on geometry and color, whose results allow the tracking of the targets in the scene with a particle filter. The main features exhibited by the proposal are, first, a remarkable accuracy in terms of target 3D positioning, and second, a great recovery ability after tracking losses due to insufficient input data. The proposed system for visual-based camera self-positioning uses the observations of moving objects and a schematic map of the passable areas of the environment to infer the absolute sensor position. To this end, a new Bayesian framework combining trajectory observations and map-induced dynamic models for moving objects is designed, which represents an approach to camera positioning never addressed before in the literature. This task is divided into two different sub-tasks, setting ambiguity analysis and approximate position estimation, on the one hand, and position refining, on the other, since they require the design of specific sampling algorithms to correctly exploit the discriminative features of the developed framework. This system, designed for camera positioning and demonstrated in urban traffic environments, can also be applied to different environments and sensors of other modalities after certain required adaptations.
Resumo:
En esta Tesis Doctoral se emplean y desarrollan Métodos Bayesianos para su aplicación en análisis geotécnicos habituales, con un énfasis particular en (i) la valoración y selección de modelos geotécnicos basados en correlaciones empíricas; en (ii) el desarrollo de predicciones acerca de los resultados esperados en modelos geotécnicos complejos. Se llevan a cabo diferentes aplicaciones a problemas geotécnicos, como es el caso de: (1) En el caso de rocas intactas, se presenta un método Bayesiano para la evaluación de modelos que permiten estimar el módulo de Young a partir de la resistencia a compresión simple (UCS). La metodología desarrollada suministra estimaciones de las incertidumbres de los parámetros y predicciones y es capaz de diferenciar entre las diferentes fuentes de error. Se desarrollan modelos "específicos de roca" para los tipos de roca más comunes y se muestra cómo se pueden "actualizar" esos modelos "iniciales" para incorporar, cuando se encuentra disponible, la nueva información específica del proyecto, reduciendo las incertidumbres del modelo y mejorando sus capacidades predictivas. (2) Para macizos rocosos, se presenta una metodología, fundamentada en un criterio de selección de modelos, que permite determinar el modelo más apropiado, entre un conjunto de candidatos, para estimar el módulo de deformación de un macizo rocoso a partir de un conjunto de datos observados. Una vez que se ha seleccionado el modelo más apropiado, se emplea un método Bayesiano para obtener distribuciones predictivas de los módulos de deformación de macizos rocosos y para actualizarlos con la nueva información específica del proyecto. Este método Bayesiano de actualización puede reducir significativamente la incertidumbre asociada a la predicción, y por lo tanto, afectar las estimaciones que se hagan de la probabilidad de fallo, lo cual es de un interés significativo para los diseños de mecánica de rocas basados en fiabilidad. (3) En las primeras etapas de los diseños de mecánica de rocas, la información acerca de los parámetros geomecánicos y geométricos, las tensiones in-situ o los parámetros de sostenimiento, es, a menudo, escasa o incompleta. Esto plantea dificultades para aplicar las correlaciones empíricas tradicionales que no pueden trabajar con información incompleta para realizar predicciones. Por lo tanto, se propone la utilización de una Red Bayesiana para trabajar con información incompleta y, en particular, se desarrolla un clasificador Naïve Bayes para predecir la probabilidad de ocurrencia de grandes deformaciones (squeezing) en un túnel a partir de cinco parámetros de entrada habitualmente disponibles, al menos parcialmente, en la etapa de diseño. This dissertation employs and develops Bayesian methods to be used in typical geotechnical analyses, with a particular emphasis on (i) the assessment and selection of geotechnical models based on empirical correlations; on (ii) the development of probabilistic predictions of outcomes expected for complex geotechnical models. Examples of application to geotechnical problems are developed, as follows: (1) For intact rocks, we present a Bayesian framework for model assessment to estimate the Young’s moduli based on their UCS. Our approach provides uncertainty estimates of parameters and predictions, and can differentiate among the sources of error. We develop ‘rock-specific’ models for common rock types, and illustrate that such ‘initial’ models can be ‘updated’ to incorporate new project-specific information as it becomes available, reducing model uncertainties and improving their predictive capabilities. (2) For rock masses, we present an approach, based on model selection criteria to select the most appropriate model, among a set of candidate models, to estimate the deformation modulus of a rock mass, given a set of observed data. Once the most appropriate model is selected, a Bayesian framework is employed to develop predictive distributions of the deformation moduli of rock masses, and to update them with new project-specific data. Such Bayesian updating approach can significantly reduce the associated predictive uncertainty, and therefore, affect our computed estimates of probability of failure, which is of significant interest to reliability-based rock engineering design. (3) In the preliminary design stage of rock engineering, the information about geomechanical and geometrical parameters, in situ stress or support parameters is often scarce or incomplete. This poses difficulties in applying traditional empirical correlations that cannot deal with incomplete data to make predictions. Therefore, we propose the use of Bayesian Networks to deal with incomplete data and, in particular, a Naïve Bayes classifier is developed to predict the probability of occurrence of tunnel squeezing based on five input parameters that are commonly available, at least partially, at design stages.
Resumo:
I. GENERALIDADES 1.1. Introducción Entre los diversos tipos de perturbaciones eléctricas, los huecos de tensión son considerados el problema de calidad de suministro más frecuente en los sistemas eléctricos. Este fenómeno es originado por un aumento extremo de la corriente en el sistema, causado principalmente por cortocircuitos o maniobras inadecuadas en la red. Este tipo de perturbación eléctrica está caracterizado básicamente por dos parámetros: tensión residual y duración. Típicamente, se considera que el hueco se produce cuando la tensión residual alcanza en alguna de las fases un valor entre 0.01 a 0.9 pu y tiene una duración de hasta 60 segundos. Para un usuario final, el efecto más relevante de un hueco de tensión es la interrupción o alteración de la operación de sus equipos, siendo los dispositivos de naturaleza electrónica los principalmente afectados (p. ej. ordenador, variador de velocidad, autómata programable, relé, etc.). Debido al auge tecnológico de las últimas décadas y a la búsqueda constante de automatización de los procesos productivos, el uso de componentes electrónicos resulta indispensable en la actualidad. Este hecho, lleva a que los efectos de los huecos de tensión sean más evidentes para el usuario final, provocando que su nivel de exigencia de la calidad de energía suministrada sea cada vez mayor. De forma general, el estudio de los huecos de tensión suele ser abordado bajo dos enfoques: en la carga o en la red. Desde el punto de vista de la carga, se requiere conocer las características de sensibilidad de los equipos para modelar su respuesta ante variaciones súbitas de la tensión del suministro eléctrico. Desde la perspectiva de la red, se busca estimar u obtener información adecuada que permita caracterizar su comportamiento en términos de huecos de tensión. En esta tesis, el trabajo presentado se encuadra en el segundo aspecto, es decir, en el modelado y estimación de la respuesta de un sistema eléctrico de potencia ante los huecos de tensión. 1.2. Planteamiento del problema A pesar de que los huecos de tensión son el problema de calidad de suministro más frecuente en las redes, hasta la actualidad resulta complejo poder analizar de forma adecuada este tipo de perturbación para muchas compañías del sector eléctrico. Entre las razones más comunes se tienen: - El tiempo de monitorización puede llegar a ser de varios años para conseguir una muestra de registros de huecos estadísticamente válida. - La limitación de recursos económicos para la adquisición e instalación de equipos de monitorización de huecos. - El elevado coste operativo que implica el análisis de los datos de los medidores de huecos de tensión instalados. - La restricción que tienen los datos de calidad de energía de las compañías eléctricas. Es decir, ante la carencia de datos que permitan analizar con mayor detalle los huecos de tensión, es de interés de las compañías eléctricas y la academia poder crear métodos fiables que permitan profundizar en el estudio, estimación y supervisión de este fenómeno electromagnético. Los huecos de tensión, al ser principalmente originados por eventos fortuitos como los cortocircuitos, son el resultado de diversas variables exógenas como: (i) la ubicación de la falta, (ii) la impedancia del material de contacto, (iii) el tipo de fallo, (iv) la localización del fallo en la red, (v) la duración del evento, etc. Es decir, para plantear de forma adecuada cualquier modelo teórico sobre los huecos de tensión, se requeriría representar esta incertidumbre combinada de las variables para proveer métodos realistas y, por ende, fiables para los usuarios. 1.3. Objetivo La presente tesis ha tenido como objetivo el desarrollo diversos métodos estocásticos para el estudio, estimación y supervisión de los huecos de tensión en los sistemas eléctricos de potencia. De forma específica, se ha profundizado en los siguientes ámbitos: - En el modelado realista de las variables que influyen en la caracterización de los huecos. Esto es, en esta Tesis se ha propuesto un método que permite representar de forma verosímil su cuantificación y aleatoriedad en el tiempo empleando distribuciones de probabilidad paramétricas. A partir de ello, se ha creado una herramienta informática que permite estimar la severidad de los huecos de tensión en un sistema eléctrico genérico. - Se ha analizado la influencia la influencia de las variables de entrada en la estimación de los huecos de tensión. En este caso, el estudio se ha enfocado en las variables de mayor divergencia en su caracterización de las propuestas existentes. - Se ha desarrollado un método que permite estima el número de huecos de tensión de una zona sin monitorización a través de la información de un conjunto limitado de medidas de un sistema eléctrico. Para ello, se aplican los principios de la estadística Bayesiana, estimando el número de huecos de tensión más probable de un emplazamiento basándose en los registros de huecos de otros nudos de la red. - Plantear una estrategia para optimizar la monitorización de los huecos de tensión en un sistema eléctrico. Es decir, garantizar una supervisión del sistema a través de un número de medidores menor que el número de nudos de la red. II. ESTRUCTURA DE LA TESIS Para plantear las propuestas anteriormente indicadas, la presente Tesis se ha estructurado en seis capítulos. A continuación, se describen brevemente los mismos. A manera de capítulo introductorio, en el capítulo 1, se realiza una descripción del planteamiento y estructura de la presente tesis. Esto es, se da una visión amplia de la problemática a tratar, además de describir el alcance de cada capítulo de la misma. En el capítulo 2, se presenta una breve descripción de los fundamentos y conceptos generales de los huecos de tensión. Los mismos, buscan brindar al lector de una mejor comprensión de los términos e indicadores más empleados en el análisis de severidad de los huecos de tensión en las redes eléctricas. Asimismo, a manera de antecedente, se presenta un resumen de las principales características de las técnicas o métodos existentes aplicados en la predicción y monitorización óptima de los huecos de tensión. En el capítulo 3, se busca fundamentalmente conocer la importancia de las variables que determinen la frecuencia o severidad de los huecos de tensión. Para ello, se ha implementado una herramienta de estimación de huecos de tensión que, a través de un conjunto predeterminado de experimentos mediante la técnica denominada Diseño de experimentos, analiza la importancia de la parametrización de las variables de entrada del modelo. Su análisis, es realizado mediante la técnica de análisis de la varianza (ANOVA), la cual permite establecer con rigor matemático si la caracterización de una determinada variable afecta o no la respuesta del sistema en términos de los huecos de tensión. En el capítulo 4, se propone una metodología que permite predecir la severidad de los huecos de tensión de todo el sistema a partir de los registros de huecos de un conjunto reducido de nudos de dicha red. Para ello, se emplea el teorema de probabilidad condicional de Bayes, el cual calcula las medidas más probables de todo el sistema a partir de la información proporcionada por los medidores de huecos instalados. Asimismo, en este capítulo se revela una importante propiedad de los huecos de tensión, como es la correlación del número de eventos de huecos de tensión en diversas zonas de las redes eléctricas. En el capítulo 5, se desarrollan dos métodos de localización óptima de medidores de huecos de tensión. El primero, que es una evolución metodológica del criterio de observabilidad; aportando en el realismo de la pseudo-monitorización de los huecos de tensión con la que se calcula el conjunto óptimo de medidores y, por ende, en la fiabilidad del método. Como una propuesta alternativa, se emplea la propiedad de correlación de los eventos de huecos de tensión de una red para plantear un método que permita establecer la severidad de los huecos de todo el sistema a partir de una monitorización parcial de dicha red. Finalmente, en el capítulo 6, se realiza una breve descripción de las principales aportaciones de los estudios realizados en esta tesis. Adicionalmente, se describen diversos temas a desarrollar en futuros trabajos. III. RESULTADOS En base a las pruebas realizadas en las tres redes planteadas; dos redes de prueba IEEE de 24 y 118 nudos (IEEE-24 e IEEE-118), además del sistema eléctrico de la República del Ecuador de 357 nudos (EC-357), se describen los siguientes puntos como las observaciones más relevantes: A. Estimación de huecos de tensión en ausencia de medidas: Se implementa un método estocástico de estimación de huecos de tensión denominado PEHT, el cual representa con mayor realismo la simulación de los eventos de huecos de un sistema a largo plazo. Esta primera propuesta de la tesis, es considerada como un paso clave para el desarrollo de futuros métodos del presente trabajo, ya que permite emular de forma fiable los registros de huecos de tensión a largo plazo en una red genérica. Entre las novedades más relevantes del mencionado Programa de Estimación de Huecos de Tensión (PEHT) se tienen: - Considerar el efecto combinado de cinco variables aleatorias de entrada para simular los eventos de huecos de tensión en una pseudo-monitorización a largo plazo. Las variables de entrada modeladas en la caracterización de los huecos de tensión en el PEHT son: (i) coeficiente de fallo, (ii) impedancia de fallo, (iii) tipo de fallo, (iv) localización del fallo y (v) duración. - El modelado estocástico de las variables de entrada impedancia de fallo y duración en la caracterización de los eventos de huecos de tensión. Para la parametrización de las variables mencionadas, se realizó un estudio detallado del comportamiento real de las mismas en los sistemas eléctricos. Asimismo, se define la función estadística que mejor representa la naturaleza aleatoria de cada variable. - Considerar como variables de salida del PEHT a indicadores de severidad de huecos de uso común en las normativas, como es el caso de los índices: SARFI-X, SARFI-Curve, etc. B. Análisis de sensibilidad de los huecos de tensión: Se presenta un estudio causa-efecto (análisis de sensibilidad) de las variables de entrada de mayor divergencia en su parametrización entre las referencias relacionadas a la estimación de los huecos de tensión en redes eléctricas. De forma específica, se profundiza en el estudio de la influencia de la parametrización de las variables coeficiente de fallo e impedancia de fallo en la predicción de los huecos de tensión. A continuación un resumen de las conclusiones más destacables: - La precisión de la variable de entrada coeficiente de fallo se muestra como un parámetro no influyente en la estimación del número de huecos de tensión (SARFI-90 y SARFI-70) a largo plazo. Es decir, no se requiere de una alta precisión del dato tasa de fallo de los elementos del sistema para obtener una adecuada estimación de los huecos de tensión. - La parametrización de la variable impedancia de fallo se muestra como un factor muy sensible en la estimación de la severidad de los huecos de tensión. Por ejemplo, al aumentar el valor medio de esta variable aleatoria, se disminuye considerablemente la severidad reportada de los huecos en la red. Por otra parte, al evaluar el parámetro desviación típica de la impedancia de fallo, se observa una relación directamente proporcional de este parámetro con la severidad de los huecos de tensión de la red. Esto es, al aumentar la desviación típica de la impedancia de fallo, se evidencia un aumento de la media y de la variación interanual de los eventos SARFI-90 y SARFI-70. - En base al análisis de sensibilidad desarrollado en la variable impedancia de fallo, se considera muy cuestionable la fiabilidad de los métodos de estimación de huecos de tensión que omiten su efecto en el modelo planteado. C. Estimación de huecos de tensión en base a la información de una monitorización parcial de la red: Se desarrolla un método que emplea los registros de una red parcialmente monitorizada para determinar la severidad de los huecos de todo el sistema eléctrico. A partir de los casos de estudio realizados, se observa que el método implementado (PEHT+MP) posee las siguientes características: - La metodología propuesta en el PEHT+MP combina la teoría clásica de cortocircuitos con diversas técnicas estadísticas para estimar, a partir de los datos de los medidores de huecos instalados, las medidas de huecos de los nudos sin monitorización de una red genérica. - El proceso de estimación de los huecos de tensión de la zona no monitorizada de la red se fundamenta en la aplicación del teorema de probabilidad condicional de Bayes. Es decir, en base a los datos observados (los registros de los nudos monitorizados), el PEHT+MP calcula de forma probabilística la severidad de los huecos de los nudos sin monitorización del sistema. Entre las partes claves del procedimiento propuesto se tienen los siguientes puntos: (i) la creación de una base de datos realista de huecos de tensión a través del Programa de Estimación de Huecos de Tensión (PEHT) propuesto en el capítulo anterior; y, (ii) el criterio de máxima verosimilitud empleado para estimar las medidas de huecos de los nudos sin monitorización de la red evaluada. - Las predicciones de medidas de huecos de tensión del PEHT+MP se ven potenciadas por la propiedad de correlación de los huecos de tensión en diversas zonas de un sistema eléctrico. Esta característica intrínseca de las redes eléctricas limita de forma significativa la respuesta de las zonas fuertemente correlacionadas del sistema ante un eventual hueco de tensión. Como el PEHT+MP está basado en principios probabilísticos, la reducción del rango de las posibles medidas de huecos se ve reflejado en una mejor predicción de las medidas de huecos de la zona no monitorizada. - Con los datos de un conjunto de medidores relativamente pequeño del sistema, es posible obtener estimaciones precisas (error nulo) de la severidad de los huecos de la zona sin monitorizar en las tres redes estudiadas. - El PEHT+MP se puede aplicar a diversos tipos de indicadores de severidad de los huecos de tensión, como es el caso de los índices: SARFI-X, SARFI-Curve, SEI, etc. D. Localización óptima de medidores de huecos de tensión: Se plantean dos métodos para ubicar de forma estratégica al sistema de monitorización de huecos en una red genérica. La primera propuesta, que es una evolución metodológica de la localización óptima de medidores de huecos basada en el criterio de observabilidad (LOM+OBS); y, como segunda propuesta, un método que determina la localización de los medidores de huecos según el criterio del área de correlación (LOM+COR). Cada método de localización óptima de medidores propuesto tiene un objetivo concreto. En el caso del LOM+OBS, la finalidad del método es determinar el conjunto óptimo de medidores que permita registrar todos los fallos que originen huecos de tensión en la red. Por otro lado, en el método LOM+COR se persigue definir un sistema óptimo de medidores que, mediante la aplicación del PEHT+MP (implementado en el capítulo anterior), sea posible estimar de forma precisa las medidas de huecos de tensión de todo el sistema evaluado. A partir del desarrollo de los casos de estudio de los citados métodos de localización óptima de medidores en las tres redes planteadas, se describen a continuación las observaciones más relevantes: - Como la generación de pseudo-medidas de huecos de tensión de los métodos de localización óptima de medidores (LOM+OBS y LOM+COR) se obtienen mediante la aplicación del algoritmo PEHT, la formulación del criterio de optimización se realiza en base a una pseudo-monitorización realista, la cual considera la naturaleza aleatoria de los huecos de tensión a través de las cinco variables estocásticas modeladas en el PEHT. Esta característica de la base de datos de pseudo-medidas de huecos de los métodos LOM+OBS y LOM+COR brinda una mayor fiabilidad del conjunto óptimo de medidores calculado respecto a otros métodos similares en la bibliografía. - El conjunto óptimo de medidores se determina según la necesidad del operador de la red. Esto es, si el objetivo es registrar todos los fallos que originen huecos de tensión en el sistema, se emplea el criterio de observabilidad en la localización óptima de medidores de huecos. Por otra parte, si se plantea definir un sistema de monitorización que permita establecer la severidad de los huecos de tensión de todo el sistema en base a los datos de un conjunto reducido de medidores de huecos, el criterio de correlación resultaría el adecuado. De forma específica, en el caso del método LOM+OBS, basado en el criterio de observabilidad, se evidenciaron las siguientes propiedades en los casos de estudio realizados: - Al aumentar el tamaño de la red, se observa la tendencia de disminuir el porcentaje de nudos monitorizados de dicho sistema. Por ejemplo, para monitorizar los fallos que originan huecos en la red IEEE-24, se requiere monitorizar el 100\% de los nudos del sistema. En el caso de las redes IEEE-118 y EC-357, el método LOM+OBS determina que con la monitorización de un 89.5% y 65.3% del sistema, respectivamente, se cumpliría con el criterio de observabilidad del método. - El método LOM+OBS permite calcular la probabilidad de utilización del conjunto óptimo de medidores a largo plazo, estableciendo así un criterio de la relevancia que tiene cada medidor considerado como óptimo en la red. Con ello, se puede determinar el nivel de precisión u observabilidad (100%, 95%, etc.) con el cual se detectarían los fallos que generan huecos en la red estudiada. Esto es, al aumentar el nivel de precisión de detección de los fallos que originan huecos, se espera que aumente el número de medidores requeridos en el conjunto óptimo de medidores calculado. - El método LOM+OBS se evidencia como una técnica aplicable a todo tipo de sistema eléctrico (radial o mallado), el cual garantiza la detección de los fallos que originan huecos de tensión en un sistema según el nivel de observabilidad planteado. En el caso del método de localización óptima de medidores basado en el criterio del área de correlación (LOM+COR), las diversas pruebas realizadas evidenciaron las siguientes conclusiones: - El procedimiento del método LOM+COR combina los métodos de estimación de huecos de tensión de capítulos anteriores (PEHT y PEHT+MP) con técnicas de optimización lineal para definir la localización óptima de los medidores de huecos de tensión de una red. Esto es, se emplea el PEHT para generar los pseudo-registros de huecos de tensión, y, en base al criterio planteado de optimización (área de correlación), el LOM+COR formula y calcula analíticamente el conjunto óptimo de medidores de la red a largo plazo. A partir de la información registrada por este conjunto óptimo de medidores de huecos, se garantizaría una predicción precisa de la severidad de los huecos de tensión de todos los nudos del sistema con el PEHT+MP. - El método LOM+COR requiere un porcentaje relativamente reducido de nudos del sistema para cumplir con las condiciones de optimización establecidas en el criterio del área de correlación. Por ejemplo, en el caso del número total de huecos (SARFI-90) de las redes IEEE-24, IEEE-118 y EC-357, se calculó un conjunto óptimo de 9, 12 y 17 medidores de huecos, respectivamente. Es decir, solamente se requeriría monitorizar el 38\%, 10\% y 5\% de los sistemas indicados para supervisar los eventos SARFI-90 en toda la red. - El método LOM+COR se muestra como un procedimiento de optimización versátil, el cual permite reducir la dimensión del sistema de monitorización de huecos de redes eléctricas tanto radiales como malladas. Por sus características, este método de localización óptima permite emular una monitorización integral del sistema a través de los registros de un conjunto pequeño de monitores. Por ello, este nuevo método de optimización de medidores sería aplicable a operadores de redes que busquen disminuir los costes de instalación y operación del sistema de monitorización de los huecos de tensión. ABSTRACT I. GENERALITIES 1.1. Introduction Among the various types of electrical disturbances, voltage sags are considered the most common quality problem in power systems. This phenomenon is caused by an extreme increase of the current in the network, primarily caused by short-circuits or inadequate maneuvers in the system. This type of electrical disturbance is basically characterized by two parameters: residual voltage and duration. Typically, voltage sags occur when the residual voltage, in some phases, reaches a value between 0.01 to 0.9 pu and lasts up to 60 seconds. To an end user, the most important effect of a voltage sags is the interruption or alteration of their equipment operation, with electronic devices the most affected (e.g. computer, drive controller, PLC, relay, etc.). Due to the technology boom of recent decades and the constant search for automating production processes, the use of electronic components is essential today. This fact makes the effects of voltage sags more noticeable to the end user, causing the level of demand for a quality energy supply to be increased. In general, the study of voltage sags is usually approached from one of two aspects: the load or the network. From the point of view of the load, it is necessary to know the sensitivity characteristics of the equipment to model their response to sudden changes in power supply voltage. From the perspective of the network, the goal is to estimate or obtain adequate information to characterize the network behavior in terms of voltage sags. In this thesis, the work presented fits into the second aspect; that is, in the modeling and estimation of the response of a power system to voltage sag events. 1.2. Problem Statement Although voltage sags are the most frequent quality supply problem in electrical networks, thistype of disturbance remains complex and challenging to analyze properly. Among the most common reasons for this difficulty are: - The sag monitoring time, because it can take up to several years to get a statistically valid sample. - The limitation of funds for the acquisition and installation of sag monitoring equipment. - The high operating costs involved in the analysis of the voltage sag data from the installed monitors. - The restrictions that electrical companies have with the registered power quality data. That is, given the lack of data to further voltage sag analysis, it is of interest to electrical utilities and researchers to create reliable methods to deepen the study, estimation and monitoring of this electromagnetic phenomenon. Voltage sags, being mainly caused by random events such as short-circuits, are the result of various exogenous variables such as: (i) the number of faults of a system element, (ii) the impedance of the contact material, (iii) the fault type, (iv) the fault location, (v) the duration of the event, etc. That is, to properly raise any theoretical model of voltage sags, it is necessary to represent the combined uncertainty of variables to provide realistic methods that are reliable for users. 1.3. Objective This Thesis has been aimed at developing various stochastic methods for the study, estimation and monitoring of voltage sags in electrical power systems. Specifically, it has deepened the research in the following areas: - This research furthers knowledge in the realistic modeling of the variables that influence sag characterization. This thesis proposes a method to credibly represent the quantification and randomness of the sags in time by using parametric probability distributions. From this, a software tool was created to estimate the severity of voltage sags in a generic power system. - This research also analyzes the influence of the input variables in the estimation of voltage sags. In this case, the study has focused on the variables of greatest divergence in their characterization of the existing proposals. - A method was developed to estimate the number of voltage sags of an area without monitoring through the information of a limited set of sag monitors in an electrical system. To this end, the principles of Bayesian statistics are applied, estimating the number of sags most likely to happen in a system busbar based in records of other sag network busbars. - A strategy was developed to optimize the monitorization of voltage sags on a power system. Its purpose is to ensure the monitoring of the system through a number of monitors lower than the number of busbars of the network assessed. II. THESIS STRUCTURE To describe in detail the aforementioned proposals, this Thesis has been structured into six chapters. Below is are brief descriptions of them: As an introductory chapter, Chapter 1, provides a description of the approach and structure of this thesis. It presents a wide view of the problem to be treated, in addition to the description of the scope of each chapter. In Chapter 2, a brief description of the fundamental and general concepts of voltage sags is presented to provide to the reader a better understanding of the terms and indicators used in the severity analysis of voltage sags in power networks. Also, by way of background, a summary of the main features of existing techniques or methods used in the prediction and optimal monitoring of voltage sags is also presented. Chapter 3 essentially seeks to know the importance of the variables that determine the frequency or severity of voltage sags. To do this, a tool to estimate voltage sags is implemented that, through a predetermined set of experiments using the technique called Design of Experiments, discusses the importance of the parameters of the input variables of the model. Its analysis is interpreted by using the technique of analysis of variance (ANOVA), which provides mathematical rigor to establish whether the characterization of a particular variable affects the system response in terms of voltage sags or not. In Chapter 4, a methodology to predict the severity of voltage sags of an entire system through the sag logs of a reduced set of monitored busbars is proposed. For this, the Bayes conditional probability theorem is used, which calculates the most likely sag severity of the entire system from the information provided by the installed monitors. Also, in this chapter an important property of voltage sags is revealed, as is the correlation of the voltage sags events in several zones of a power system. In Chapter 5, two methods of optimal location of voltage sag monitors are developed. The first one is a methodological development of the observability criteria; it contributes to the realism of the sag pseudo-monitoring with which the optimal set of sag monitors is calculated and, therefore, to the reliability of the proposed method. As an alternative proposal, the correlation property of the sag events of a network is used to raise a method that establishes the sag severity of the entire system from a partial monitoring of the network. Finally, in Chapter 6, a brief description of the main contributions of the studies in this Thesis is detailed. Additionally, various themes to be developed in future works are described. III. RESULTS. Based on tests on the three networks presented, two IEEE test networks of 24 and 118 busbars (IEEE-24 and IEEE-118) and the electrical system of the Republic of Ecuador (EC-357), the following points present the most important observations: A. Estimation of voltage sags in the absence of measures: A stochastic estimation method of voltage sags, called PEHT, is implemented to represent with greater realism the long-term simulation of voltage sags events in a system. This first proposal of this thesis is considered a key step for the development of future methods of this work, as it emulates in a reliable manner the voltage sag long-term records in a generic network. Among the main innovations of this voltage sag estimation method are the following: - Consideration of the combined effect of five random input variables to simulate the events of voltage sags in long-term monitoring is included. The input variables modeled in the characterization of voltage sags on the PEHT are as follows: (i) fault coefficient, (ii) fault impedance, (iii) type of fault, (iv) location of the fault, and (v) fault duration. - Also included is the stochastic modeling of the input variables of fault impedance and duration in the characterization of the events of voltage sags. For the parameterization of these variables, a detailed study of the real behavior in power systems is developed. Also, the statistical function best suited to the random nature of each variable is defined. - Consideration of sag severity indicators used in standards as PEHT output variables, including such as indices as SARFI-X, SARFI-Curve, etc. B. Sensitivity analysis of voltage sags: A cause-effect study (sensitivity analysis) of the input variables of greatest divergence between reference parameterization related to the estimation of voltage sags in electrical networks is presented. Specifically, it delves into the study of the influence of the parameterization of the variables fault coefficient and fault impedance in the voltage sag estimation. Below is a summary of the most notable observations: - The accuracy of the input variable fault coefficient is shown as a non-influential parameter in the long-term estimation of the number of voltage sags (SARFI-90 and SARFI-70). That is, it does not require a high accuracy of the fault rate data of system elements for a proper voltage sag estimation. - The parameterization of the variable fault impedance is shown to be a very sensitive factor in the estimation of the voltage sag severity. For example, by increasing the average value of this random variable, the reported sag severity in the network significantly decreases. Moreover, in assessing the standard deviation of the fault impedance parameter, a direct relationship of this parameter with the voltage sag severity of the network is observed. That is, by increasing the fault impedance standard deviation, an increase of the average and the interannual variation of the SARFI-90 and SARFI-70 events is evidenced. - Based on the sensitivity analysis developed in the variable fault impedance, the omission of this variable in the voltage sag estimation would significantly call into question the reliability of the responses obtained. C. Voltage sag estimation from the information of a network partially monitored: A method that uses the voltage sag records of a partially monitored network for the sag estimation of all the power system is developed. From the case studies performed, it is observed that the method implemented (PEHT+MP) has the following characteristics: - The methodology proposed in the PEHT+MP combines the classical short-circuit theory with several statistical techniques to estimate, from data the of the installed sag meters, the sag measurements of unmonitored busbars of a generic power network. - The estimation process of voltage sags of the unmonitored zone of the network is based on the application of the conditional probability theorem of Bayes. That is, based on the observed data (monitored busbars records), the PEHT+MP calculates probabilistically the sag severity at unmonitored system busbars. Among the key parts of the proposed procedure are the following: (i) the creation of a realistic data base of voltage sags through of the sag estimation program (PEHT); and, (ii) the maximum likelihood criterion used to estimate the sag indices of system busbars without monitoring. - The voltage sag measurement estimations of PEHT+MP are potentiated by the correlation property of the sag events in power systems. This inherent characteristic of networks significantly limits the response of strongly correlated system zones to a possible voltage sag. As the PEHT+MP is based on probabilistic principles, a reduction of the range of possible sag measurements is reflected in a better sag estimation of the unmonitored area of the power system. - From the data of a set of monitors representing a relatively small portion of the system, to obtain accurate estimations (null error) of the sag severity zones without monitoring is feasible in the three networks studied. - The PEHT+MP can be applied to several types of sag indices, such as: SARFI-X, SARFI-Curve, SEI, etc. D. Optimal location of voltage sag monitors in power systems: Two methods for strategically locating the sag monitoring system are implemented for a generic network. The first proposal is a methodological development of the optimal location of sag monitors based on the observability criterion (LOM + OBS); the second proposal is a method that determines the sag monitor location according to the correlation area criterion (LOM+COR). Each proposed method of optimal location of sag monitors has a specific goal. In the case of LOM+OBS, the purpose of the method is to determine the optimal set of sag monitors to record all faults that originate voltage sags in the network. On the other hand, the LOM+COR method attempts to define the optimal location of sag monitors to estimate the sag indices in all the assessed network with the PEHT+MP application. From the development of the case studies of these methods of optimal location of sag monitors in the three networks raised, the most relevant observations are described below: - As the generation of voltage sag pseudo-measurements of the optimal location methods (LOM+OBS and LOM+COR) are obtained by applying the algorithm PEHT, the formulation of the optimization criterion is performed based on a realistic sag pseudo-monitoring, which considers the random nature of voltage sags through the five stochastic variables modeled in PEHT. This feature of the database of sag pseudo-measurements of the LOM+OBS and LOM+COR methods provides a greater reliability of the optimal set of monitors calculated when compared to similar methods in the bibliography. - The optimal set of sag monitors is determined by the network operator need. That is, if the goal is to record all faults that originate from voltage sags in the system, the observability criterion is used to determine the optimal location of sag monitors (LOM+OBS). Moreover, if the objective is to define a monitoring system that allows establishing the sag severity of the system from taken from information based on a limited set of sag monitors, the correlation area criterion would be appropriate (LOM+COR). Specifically, in the case of the LOM+OBS method (based on the observability criterion), the following properties were observed in the case studies: - By increasing the size of the network, there was observed a reduction in the percentage of monitored system busbars required. For example, to monitor all the faults which cause sags in the IEEE-24 network, then 100% of the system busbars are required for monitoring. In the case of the IEEE-118 and EC-357 networks, the method LOM+OBS determines that with monitoring 89.5 % and 65.3 % of the system, respectively, the observability criterion of the method would be fulfilled. - The LOM+OBS method calculates the probability of using the optimal set of sag monitors in the long term, establishing a relevance criterion of each sag monitor considered as optimal in the network. With this, the level of accuracy or observability (100%, 95%, etc.) can be determined, with which the faults that caused sags in the studied network are detected. That is, when the accuracy level for detecting faults that cause sags in the system is increased, a larger number of sag monitors is expected when calculating the optimal set of monitors. - The LOM + OBS method is demonstrated to be a technique applicable to any type of electrical system (radial or mesh), ensuring the detection of faults that cause voltage sags in a system according to the observability level raised. In the case of the optimal localization of sag monitors based on the criterion of correlation area (LOM+COR), several tests showed the following conclusions: - The procedure of LOM+COR method combines the implemented algorithms of voltage sag estimation (PEHT and PEHT+MP) with linear optimization techniques to define the optimal location of the sag monitors in a network. That is, the PEHT is used to generate the voltage sag pseudo-records, and, from the proposed optimization criterion (correlation area), the LOM+COR formulates and analytically calculates the optimal set of sag monitors of the network in the long term. From the information recorded by the optimal set of sag monitors, an accurate prediction of the voltage sag severity at all the busbars of the system is guaranteed with the PEHT+MP. - The LOM + COR method is shown to be a versatile optimization procedure, which reduces the size of the sag monitoring system both at radial as meshed grids. Due to its characteristics, this optimal location method allows emulation of complete system sag monitoring through the records of a small optimal set of sag monitors. Therefore, this new optimization method would be applicable to network operators that looks to reduce the installation and operation costs of the voltage sag monitoring system.
Resumo:
Background: Intra-urban inequalities in mortality have been infrequently analysed in European contexts. The aim of the present study was to analyse patterns of cancer mortality and their relationship with socioeconomic deprivation in small areas in 11 Spanish cities. Methods: It is a cross-sectional ecological design using mortality data (years 1996-2003). Units of analysis were the census tracts. A deprivation index was calculated for each census tract. In order to control the variability in estimating the risk of dying we used Bayesian models. We present the RR of the census tract with the highest deprivation vs. the census tract with the lowest deprivation. Results: In the case of men, socioeconomic inequalities are observed in total cancer mortality in all cities, except in Castellon, Cordoba and Vigo, while Barcelona (RR = 1.53 95%CI 1.42-1.67), Madrid (RR = 1.57 95%CI 1.49-1.65) and Seville (RR = 1.53 95%CI 1.36-1.74) present the greatest inequalities. In general Barcelona and Madrid, present inequalities for most types of cancer. Among women for total cancer mortality, inequalities have only been found in Barcelona and Zaragoza. The excess number of cancer deaths due to socioeconomic deprivation was 16,413 for men and 1,142 for women. Conclusion: This study has analysed inequalities in cancer mortality in small areas of cities in Spain, not only relating this mortality with socioeconomic deprivation, but also calculating the excess mortality which may be attributed to such deprivation. This knowledge is particularly useful to determine which geographical areas in each city need intersectorial policies in order to promote a healthy environment.
Resumo:
Many studies on birds focus on the collection of data through an experimental design, suitable for investigation in a classical analysis of variance (ANOVA) framework. Although many findings are confirmed by one or more experts, expert information is rarely used in conjunction with the survey data to enhance the explanatory and predictive power of the model. We explore this neglected aspect of ecological modelling through a study on Australian woodland birds, focusing on the potential impact of different intensities of commercial cattle grazing on bird density in woodland habitat. We examine a number of Bayesian hierarchical random effects models, which cater for overdispersion and a high frequency of zeros in the data using WinBUGS and explore the variation between and within different grazing regimes and species. The impact and value of expert information is investigated through the inclusion of priors that reflect the experience of 20 experts in the field of bird responses to disturbance. Results indicate that expert information moderates the survey data, especially in situations where there are little or no data. When experts agreed, credible intervals for predictions were tightened considerably. When experts failed to agree, results were similar to those evaluated in the absence of expert information. Overall, we found that without expert opinion our knowledge was quite weak. The fact that the survey data is quite consistent, in general, with expert opinion shows that we do know something about birds and grazing and we could learn a lot faster if we used this approach more in ecology, where data are scarce. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
This paper reports on the development of an artificial neural network (ANN) method to detect laminar defects following the pattern matching approach utilizing dynamic measurement. Although structural health monitoring (SHM) using ANN has attracted much attention in the last decade, the problem of how to select the optimal class of ANN models has not been investigated in great depth. It turns out that the lack of a rigorous ANN design methodology is one of the main reasons for the delay in the successful application of the promising technique in SHM. In this paper, a Bayesian method is applied in the selection of the optimal class of ANN models for a given set of input/target training data. The ANN design method is demonstrated for the case of the detection and characterisation of laminar defects in carbon fibre-reinforced beams using flexural vibration data for beams with and without non-symmetric delamination damage.
Resumo:
This paper presents a greedy Bayesian experimental design criterion for heteroscedastic Gaussian process models. The criterion is based on the Fisher information and is optimal in the sense of minimizing parameter uncertainty for likelihood based estimators. We demonstrate the validity of the criterion under different noise regimes and present experimental results from a rabies simulator to demonstrate the effectiveness of the resulting approximately optimal designs.