945 resultados para Protein structures
Resumo:
The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.
Resumo:
Structure comparison tools can be used to align related protein structures to identify structurally conserved and variable regions and to infer functional and evolutionary relationships. While the conserved regions often superimpose well, the variable regions appear non superimposable. Differences in homologous protein structures are thought to be due to evolutionary plasticity to accommodate diverged sequences during evolution. One of the kinds of differences between 3-D structures of homologous proteins is rigid body displacement. A glaring example is not well superimposed equivalent regions of homologous proteins corresponding to a-helical conformation with different spatial orientations. In a rigid body superimposition, these regions would appear variable although they may contain local similarity. Also, due to high spatial deviation in the variable region, one-to-one correspondence at the residue level cannot be determined accurately. Another kind of difference is conformational variability and the most common example is topologically equivalent loops of two homologues but with different conformations. In the current study, we present a refined view of the ``structurally variable'' regions which may contain local similarity obscured in global alignment of homologous protein structures. As structural alphabet is able to describe local structures of proteins precisely through Protein Blocks approach, conformational similarity has been identified in a substantial number of `variable' regions in a large data set of protein structural alignments; optimal residue-residue equivalences could be achieved on the basis of Protein Blocks which led to improved local alignments. Also, through an example, we have demonstrated how the additional information on local backbone structures through protein blocks can aid in comparative modeling of a loop region. In addition, understanding on sequence-structure relationships can be enhanced through our approach. This has been illustrated through examples where the equivalent regions in homologous protein structures share sequence similarity to varied extent but do not preserve local structure.
Resumo:
With the immense growth in the number of available protein structures, fast and accurate structure comparison has been essential. We propose an efficient method for structure comparison, based on a structural alphabet. Protein Blocks (PBs) is a widely used structural alphabet with 16 pentapeptide conformations that can fairly approximate a complete protein chain. Thus a 3D structure can be translated into a 1D sequence of PBs. With a simple Needleman-Wunsch approach and a raw PB substitution matrix, PB-based structural alignments were better than many popular methods. iPBA web server presents an improved alignment approach using (i) specialized PB Substitution Matrices (SM) and (ii) anchor-based alignment methodology. With these developments, the quality of similar to 88% of alignments was improved. iPBA alignments were also better than DALI, MUSTANG and GANGSTA(+) in > 80% of the cases. The webserver is designed to for both pairwise comparisons and database searches. Outputs are given as sequence alignment and superposed 3D structures displayed using PyMol and Jmol. A local alignment option for detecting subs-structural similarity is also embedded. As a fast and efficient `sequence-based' structure comparison tool, we believe that it will be quite useful to the scientific community. iPBA can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/ipba/.
Resumo:
PDB Goodies is a web-based graphical user interface (GUI) to manipulate the Protein Data Bank file containing the three-dimensional atomic coordinates of protein structures. The program also allows users to save the manipulated three-dimensional atomic coordinate file on their local client system. These fragments are used in various stages of structure elucidation and analysis. This software is incorporated with all the three-dimensional protein structures available in the Protein Data Bank, which presently holds approximately 18 000 structures. In addition, this program works on a three-dimensional atomic coordinate file (Protein Data Bank format) uploaded from the client machine. The program is written using CGI/PERL scripts and is platform independent. The program PDB Goodies can be accessed over the World Wide Web at http:// 144.16.71.11/pdbgoodies/.
Resumo:
The three dimensional structure of a protein provides major insights into its function. Protein structure comparison has implications in functional and evolutionary studies. A structural alphabet (SA) is a library of local protein structure prototypes that can abstract every part of protein main chain conformation. Protein Blocks (PBS) is a widely used SA, composed of 16 prototypes, each representing a pentapeptide backbone conformation defined in terms of dihedral angles. Through this description, the 3D structural information can be translated into a 1D sequence of PBs. In a previous study, we have used this approach to compare protein structures encoded in terms of PBs. A classical sequence alignment procedure based on dynamic programming was used, with a dedicated PB Substitution Matrix (SM). PB-based pairwise structural alignment method gave an excellent performance, when compared to other established methods for mining. In this study, we have (i) refined the SMs and (ii) improved the Protein Block Alignment methodology (named as iPBA). The SM was normalized in regards to sequence and structural similarity. Alignment of protein structures often involves similar structural regions separated by dissimilar stretches. A dynamic programming algorithm that weighs these local similar stretches has been designed. Amino acid substitutions scores were also coupled linearly with the PB substitutions. iPBA improves (i) the mining efficiency rate by 6.8% and (ii) more than 82% of the alignments have a better quality. A higher efficiency in aligning multi-domain proteins could be also demonstrated. The quality of alignment is better than DALI and MUSTANG in 81.3% of the cases. Thus our study has resulted in an impressive improvement in the quality of protein structural alignment. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Structural alignments are the most widely used tools for comparing proteins with low sequence similarity. The main contribution of this paper is to derive various kernels on proteins from structural alignments, which do not use sequence information. Central to the kernels is a novel alignment algorithm which matches substructures of fixed size using spectral graph matching techniques. We derive positive semi-definite kernels which capture the notion of similarity between substructures. Using these as base more sophisticated kernels on protein structures are proposed. To empirically evaluate the kernels we used a 40% sequence non-redundant structures from 15 different SCOP superfamilies. The kernels when used with SVMs show competitive performance with CE, a state of the art structure comparison program.
Resumo:
The rapidly growing structure databases enhance the probability of finding identical sequences sharing structural similarity. Structure prediction methods are being used extensively to abridge the gap between known protein sequences and the solved structures which is essential to understand its specific biochemical and cellular functions. In this work, we plan to study the ambiguity between sequence-structure relationships and examine if sequentially identical peptide fragments adopt similar three-dimensional structures. Fragments of varying lengths (five to ten residues) were used to observe the behavior of sequence and its three-dimensional structures. The STAMP program was used to superpose the three-dimensional structures and the two parameters (Sequence Structure Similarity Score (Sc) and Root Mean Square Deviation value) were employed to classify them into three categories: similar, intermediate and dissimilar structures. Furthermore, the same approach was carried out on all the three-dimensional protein structures solved in the two organisms, Mycobacterium tuberculosis and Plasmodium falciparum to validate our results.
Resumo:
Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of 2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html.
Resumo:
The increasing number of available protein structures requires efficient tools for multiple structure comparison. Indeed, multiple structural alignments are essential for the analysis of function, evolution and architecture of protein structures. For this purpose, we proposed a new web server called multiple Protein Block Alignment (mulPBA). This server implements a method based on a structural alphabet to describe the backbone conformation of a protein chain in terms of dihedral angles. This sequence-like' representation enables the use of powerful sequence alignment methods for primary structure comparison, followed by an iterative refinement of the structural superposition. This approach yields alignments superior to most of the rigid-body alignment methods and highly comparable with the flexible structure comparison approaches. We implement this method in a web server designed to do multiple structure superimpositions from a set of structures given by the user. Outputs are given as both sequence alignment and superposed 3D structures visualized directly by static images generated by PyMol or through a Jmol applet allowing dynamic interaction. Multiple global quality measures are given. Relatedness between structures is indicated by a distance dendogram. Superimposed structures in PDB format can be also downloaded, and the results are quickly obtained. mulPBA server can be accessed at www.dsimb.inserm.fr/dsimb_tools/mulpba/.
Resumo:
In peptide and protein structures, occurrence of (phi,psi.) angles in the disallowed region of the Ramachandran map almost always suggests local regions of error or poor accuracy. However, very rarely genuine disallowed conformations occur as noted in the current study in proteins of known structure available at ultra-high resolution (<= 1.2 (A) over circle). In the current work, extent of conservation of genuine disallowed conformations in homologous proteins of known structures has been analyzed. From a dataset of 124 protein domain families, with structure of at least one constituent member in each family available at a resolution of 1.2 (A) over circle or better, we have analyzed the conservation of 221 disallowed conformations. It is observed that the disallowed conformation is only moderately conservedin protein domain families. In the gross dataset no particular residue type adopting disallowed conformation elicit high conservation of residue type though there are alignment positions in the dataset with complete conservation of both the residue type and the disallowed conformation. Conserved disallowed conformation in protein domain families play biologically significant role in roughly 50% of the cases. The residues with the disallowed conformation or its flanking residues are often located within or around the functional site of the protein. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Knowledge of protein-ligand interactions is essential to understand several biological processes and important for applications ranging from understanding protein function to drug discovery and protein engineering. Here, we describe an algorithm for the comparison of three-dimensional ligand-binding sites in protein structures. A previously described algorithm, PocketMatch (version 1.0) is optimised, expanded, and MPI-enabled for parallel execution. PocketMatch (version 2.0) rapidly quantifies binding-site similarity based on structural descriptors such as residue nature and interatomic distances. Atomic-scale alignments may also be obtained from amino acid residue pairings generated. It allows an end-user to compute database-wide, all-to-all comparisons in a matter of hours. The use of our algorithm on a sample dataset, performance-analysis, and annotated source code is also included.
Resumo:
Protein structure prediction has remained a major challenge in structural biology for more than half a century. Accelerated and cost efficient sequencing technologies have allowed researchers to sequence new organisms and discover new protein sequences. Novel protein structure prediction technologies will allow researchers to study the structure of proteins and to determine their roles in the underlying biology processes and develop novel therapeutics.
Difficulty of the problem stems from two folds: (a) describing the energy landscape that corresponds to the protein structure, commonly referred to as force field problem; and (b) sampling of the energy landscape, trying to find the lowest energy configuration that is hypothesized to be the native state of the structure in solution. The two problems are interweaved and they have to be solved simultaneously. This thesis is composed of three major contributions. In the first chapter we describe a novel high-resolution protein structure refinement algorithm called GRID. In the second chapter we present REMCGRID, an algorithm for generation of low energy decoy sets. In the third chapter, we present a machine learning approach to ranking decoys by incorporating coarse-grain features of protein structures.
Resumo:
This paper reports the availability of a database of protein structural domains (DDBASE), an alignment database of homologous proteins (HOMSTRAD) and a database of structurally aligned superfamilies (CAMPASS) on the World Wide Web (WWW). DDBASE contains information on the organization of structural domains and their boundaries; it includes only one representative domain from each of the homologous families. This database has been derived by identifying the presence of structural domains in proteins on the basis of inter-secondary structural distances using the program DIAL [Sowdhamini & Blundell (1995), Protein Sci. 4, 506-520]. The alignment of proteins in superfamilies has been performed on the basis of the structural features and relationships of individual residues using the program COMPARER [Sali & Blundell (1990), J. Mol. Biol. 212, 403-428]. The alignment databases contain information on the conserved structural features in homologous proteins and those belonging to superfamilies. Available data include the sequence alignments in structure-annotated formats and the provision for viewing superposed structures of proteins using a graphical interface. Such information, which is freely accessible on the WWW, should be of value to crystallographers in the comparison of newly determined protein structures with previously identified protein domains or existing families.
Resumo:
A comparative study on the structures of some mRNAs and their encoded proteins shows an intriguing correlation between the two foldings. Non-random distribution of codons in the secondary structures of mRNAs is also shown, which appears to be in accordance with the conformational properties of amino acids in protein structures to some extent. These results seem to suggest that there may be a kind of genetic relationship between mRNA and protein at three-dimensional level.
Resumo:
We propose a new characterization of protein structure based on the natural tetrahedral geometry of the β carbon and a new geometric measure of structural similarity, called visible volume. In our model, the side-chains are replaced by an ideal tetrahedron, the orientation of which is fixed with respect to the backbone and corresponds to the preferred rotamer directions. Visible volume is a measure of the non-occluded empty space surrounding each residue position after the side-chains have been removed. It is a robust, parameter-free, locally-computed quantity that accounts for many of the spatial constraints that are of relevance to the corresponding position in the native structure. When computing visible volume, we ignore the nature of both the residue observed at each site and the ones surrounding it. We focus instead on the space that, together, these residues could occupy. By doing so, we are able to quantify a new kind of invariance beyond the apparent variations in protein families, namely, the conservation of the physical space available at structurally equivalent positions for side-chain packing. Corresponding positions in native structures are likely to be of interest in protein structure prediction, protein design, and homology modeling. Visible volume is related to the degree of exposure of a residue position and to the actual rotamers in native proteins. In this article, we discuss the properties of this new measure, namely, its robustness with respect to both crystallographic uncertainties and naturally occurring variations in atomic coordinates, and the remarkable fact that it is essentially independent of the choice of the parameters used in calculating it. We also show how visible volume can be used to align protein structures, to identify structurally equivalent positions that are conserved in a family of proteins, and to single out positions in a protein that are likely to be of biological interest. These properties qualify visible volume as a powerful tool in a variety of applications, from the detailed analysis of protein structure to homology modeling, protein structural alignment, and the definition of better scoring functions for threading purposes.