989 resultados para Protein Biosynthesis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. Furthermore it is strongly assumed that the primordial translation system in the ‘RNA world’ most likely received direct regulatory input from ncRNA-like cofactors. The fundamental question that we would like to ask is: Does the ‘RNA world still communicate’ with the ribosome? To address this question, we have analyzed the small ncRNA interactomes of ribosomes of prokaryotic (H. volcanii, S. aureus) and unicellular eukaryotic model organisms. Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs. For a subset of these ncRNA candidates we have gathered experimental evidence that they are expressed in a stress-dependent manner and indeed directly target the ribosome. In the archaeon H. volcanii a tRNA-derived fragment was identified to target the small ribosomal subunit upon alkaline stress in vitro and in vivo. As a consequence of ribosome binding, this tRNA-fragment reduces protein synthesis by interfering with the peptidyl transferase activity. Our data reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life. Ribosome-bound ncRNAs are capable of fine tuning translation and might represent a so far largely unexplored class of regulatory sRNAs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. Furthermore it is strongly assumed that the primordial translation system in the ‘RNA world’ most likely received direct regulatory input from ncRNA-like cofactors. The fundamental question that we would like to ask is: Does the ‘RNA world still communicate’ with the ribosome? To address this question, we have analyzed the small ncRNA interactomes of ribosomes of organisms from all three domains of life. Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs.1,2 For a subset of these ncRNA candidates we have gathered experimental evidence that they are expressed in a stress-dependent manner and indeed directly target the ribosome. We show that some of these ribosome-bound small ncRNAs are capable of fine tuning protein synthesis in vitro and in vivo. Our data therefore reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life and suggest the existence of a so far largely unexplored mechanism of translation regulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. To investigate whether such a class of regulatory ncRNAs does exist we performed genomic screens for small ribosome-associated RNAs in various model organisms of all three domains [1,2]. Here we focus on the functional characterisation of an 18 nucleotide long ncRNA candidate derived from an open reading frame (ORF) of an annotated S. cerevisiae gene, which encodes a tRNA methyltransferase. Yeast cells lacking this tRNA methyltransferase showed clear growth defects in high salt containing media. Genetic analysis showed that the absence of the mRNA-derived ncRNA rather than the absence of the tRNA methyltransferase activity is responsible for the observed phenotype. Since we performed a screen for small ribosome-associated RNAs we examined the regulatory potential of the synthetic 18mer during translation in vitro and in vivo. Metabolic labeling experiments in the presence of the synthetic 18mer RNA revealed an inhibitory potential on the global protein biosynthesis rate. In vitro translation and northern blot analysis further strengthen the hypothesis, that this RNA is a ribosome-associated regulatory ncRNA. Our studies in pro- and eukaryotic model organisms reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life. Ribosome-bound ncRNAs are capable of fine tuning translation and might represent a so far largely unexplored class of regulatory ncRNAs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The functions of ribosomes in translation are complex and involve different types of activities critical for decoding the genetic code, linkage of amino acids via amide bonds to form polypeptide chains, as well as the release and proper targeting of the synthesized protein. Non-protein-coding RNAs (ncRNAs) have been recognized to be crucial in establishing regulatory networks.1 However all of the recently discovered ncRNAs involved in translation regulation target the mRNA rather than the ribosome. The main goal of this project is to identify potential novel ncRNAs that directly bind and possibly regulate the ribosome during protein biosynthesis. To address this question we applied various stress conditions to the archaeal model organism Haloferax volcanii and deep-sequenced the ribosome-associated small ncRNA interactome. In total we identified 6.250 ncRNA candidates. Significantly, we observed the emersed presence of tRNA-derived fragments (tRFs). These tRFs have been identified in all domains of life and represent a growing, yet functionally poorly understood, class of ncRNAs. Here we present evidence that tRFs from H. volcanii directly bind to ribosomes. In the presented genomic screen of the ribosome-associated RNome a 26 residue long fragment originating from the 5’ part of valine tRNA was by far the most abundant tRF. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. As a consequence of ribosome binding, Val-tRF reduces protein synthesis by interfering with peptidyl transferase activity. Therefore this tRF functions as ribosome-bound small ncRNA capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production.2 Currently we are investigating the binding site of this tRF on the 30S subunit in more detail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules are key players in controlling gene expression at multiple steps in all domains of life. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily (such as micro RNAs and small-interfering RNAs), not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). This is unexpected, given the central position the ribosome plays during gene expression. To investigate whether such a class of regulatory ncRNAs does exist we performed genomic screens for small ribosome-associated RNAs in various model organisms of all three domains [1,2]. Here we show that an mRNA-derived 18 nucleotide long ncRNA is capable of down-regulating translation in Saccharomyces cerevisiae by directly targeting the ribosome [3]. This 18-mer ncRNA binds to polysomes upon salt stress and is crucial for efficient growth under hyperosmotic conditions. Although the 18-mer RNA originates from the TRM10 locus, which encodes a tRNA methyltransferase, genetic analyses revealed the 18-mer RNA nucleotide sequence, rather than the mRNA-encoded enzyme, as the translation regulator under these stress conditions. Our data reveal the ribosome as a target for small regulatory ncRNAs and unveil the existence of a novel mechanism of translation regulation. Analogous genomic screens in organisms spanning all three domains of life demonstrate the existence of thousands of ncRNA candidates putatively regulating the ribosome. We therefore anticipate that ribosome-bound ncRNAs are capable of fine tuning translation and might represent a so far largely unexplored class of regulatory ncRNAs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules (1). Here we present evidence that tRFs from the archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii (2). The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-bound non-protein-coding RNA (ncRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production (1). (1) Gebetsberger J. and Polacek N. (2013), RNA Biol. 10:1798-1808 (2) Gebetsberger J. et. al. (2012), Archaea, Article ID 260909

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accumulating recent evidence identified the ribosome as binding target for numerous small and long non-protein-coding RNAs (ncRNAs) in various organisms of all 3 domains of life. Therefore it appears that ribosome-associated ncRNAs (rancRNAs) are a prevalent, yet poorly understood class of cellular transcripts. Since rancRNAs are associated with the arguable most central enzyme of the cell it seems plausible to propose a role in translation control. Indeed first experimental evidence on small rancRNAs has been presented, linking ribosome association with fine-tuning the rate of protein biosynthesis in a stress-dependent manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules represent major contributors to regulatory networks in controlling gene expression in a highly efficient manner. All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. To address the question, whether small ncRNA regulators exist that are capable of modulating the rate of protein production by directly interacting with the ribosome, we have analyzed the small ncRNA interactomes of ribosomes Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs in various model organisms (1,2). For a subset of these ncRNA candidates we have gathered experimental evidence that they associate with ribosomes in a stress-dependent manner and are capable of regulating gene expression by fine-tuning the rate of protein biosynthesis (3,4). Many of the investigated ribosome-bound small ncRNA appear to be processing products from larger functional RNAs, such as tRNAs (2,3) or mRNAs (3). Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. Our data reveal the ribosome as a target for small regulatory ncRNAs and demonstrate the existence of a yet unknown mechanism of translation regulation. Ribosome-associated ncRNAs (rancRNAs) are found in all domains of life and represent a prevalent but so far largely unexplored class of regulatory molecules (5). Future work on the small ncRNA interactomes of ribosomes in a variety of model systems will allow deeper insight into the conservation and functional repertoire of this emerging class of regulatory ncRNA molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules represent major contributors to regulatory networks in controlling gene expression in a highly efficient manner. Most of the recently discovered regulatory ncRNAs acting on translation target the mRNA rather than the ribosome (e.g.: miRNAs, siRNAs, antisense RNAs). To address the question, whether ncRNA regulators exist that are capable of modulating the rate of protein production by directly interacting with the ribosome, we have analyzed the small ncRNA interactomes of ribosomes. Deep-sequencing analyses revealed thousands of putative rancRNAs in various model organisms (1,2). For a subset of these ncRNA candidates we have gathered experimental evidence that they associate with ribosomes in a stress-dependent manner and fine-tune the rate of protein biosynthesis (3,4). Many of the investigated rancRNAs appear to be processing products of larger functional RNAs, such as tRNAs (2,3), mRNAs (3), or snoRNAs (2). Post-transcriptional cleavage of RNA to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. Our data disclose the ribosome as target for small regulatory RNAs. rancRNAs are found in all domains of life and represent a prevalent but so far largely unexplored class of regulatory molecules (5). Ongoing work in our lab revealed first insight into rancRNA processing and mechanism of this emerging class of translation regulators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ribosome is central to protein biosynthesis and the focus of extensive research. Recent biochemical and structural studies, especially detailed crystal structures and high resolution Cryo-EM in different functional states have broadened our understanding of the ribosome and its mode of action. However, the exact mechanism of peptide bond formation and how the ribosome catalyzes this reaction is not yet understood. Also, consequences of direct oxidative stress to the ribosome and its effects on translation have not been studied. So far, no conventional replacement or even removal of the peptidyl transferase center's bases has been able to affect in vitro translation. Significant contribution to the catalytic activity seems to stem from the ribose-phosphate backbone, specifically 2'OH of A2451. Using the technique of atomic mutagenesis, novel unnatural bases can be introduced to any desired position in the 23S rRNA, surpassing conventional mutagenesis and effectively enabling to alter single atoms in the ribosome. Reconstituting ribosomes in vitro using this approach, we replaced universally conserved PTC bases with synthetic counterparts carrying the most common oxidations 8-oxorA, 5-HOrU and 5-HOrC. To investigate the consequent effects on translation, the chemically engineered ribosomes were studied the in various functional assays. Incorporation of different oxidized bases into the 70S ribosome affected the ribosomes in different ways. Depending on the nucleobase modified, the reconstituted ribosomes exhibited radical deceleration of peptide bond formation, decrease of synthesis efficiency or even an increase of translation rate. These results may further our understanding of the residues involved in the peptide bond formation mechanism, as well as the disease-relevant effects of oxydative stress on the translation machinery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ribosome is central to protein biosynthesis and the focus of extensive research. Recent biochemical and structural studies, especially detailed crystal structures and high resolution Cryo-EM in different functional states have broadened our understanding of the ribosome and its mode of action. However, the exact mechanism of peptide bond formation and how the ribosome catalyzes this reaction is not yet understood. Also, consequences of direct oxidative stress to the ribosome and its effects on translation have not been studied. So far, no conventional replacement or even removal of the peptidyl transferase center's bases has been able to affect in vitro translation. Significant contribution to the catalytic activity seems to stem from the ribose-phosphate backbone, specifically 2'OH of A2451. Using the technique of atomic mutagenesis, novel unnatural bases can be introduced to any desired position in the 23S rRNA, surpassing conventional mutagenesis and effectively enabling to alter single atoms in the ribosome. Reconstituting ribosomes in vitro using this approach, we replaced universally conserved PTC bases with synthetic counterparts carrying the most common oxidations 8-oxorA, 5-HOrU and 5-HOrC. To investigate the consequent effects on translation, the chemically engineered ribosomes were studied the in various functional assays. Incorporation of different oxidized bases into the 70S ribosome affected the ribosomes in different ways. Depending on the nucleobase modified, the reconstituted ribosomes exhibited radical deceleration of peptide bond formation, decrease of synthesis efficiency or even an increase of translation rate. These results may further our understanding of the residues involved in the peptide bond formation mechanism, as well as the disease-relevant effects of oxydative stress on the translation machinery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As translation is the final step in gene expression it is particularly important to understand the processes involved in translation regulation. It was shown in the last years that a class of RNA, the non-protein-coding RNAs (ncRNAs), is involved in regulation of gene expression via various mechanisms (e.g. gene silencing by microRNAs). Almost all of these ncRNA discovered so far target the mRNA in order to modulate protein biosynthesis, this is rather unexpected considering the crucial role of the ribosome during gene expression. However, recent data from our laboratory showed that there is a new class of ncRNAs, which target the ribosome itself [Gebetsberger et al., 2012/ Pircher et al, 2014]. These so called ribosome-associated ncRNAs (rancRNAs) have an impact on translation regulation, mainly by interfering / modulating the rate of protein biosynthesis. The main goal of this project is to identify and describe novel potential regulatory rancRNAs in H. volcanii with the focus on intergenic candidates. Northern blot analyses already revealed interactions with the ribosome and showed differential expression of rancRNAs during different growth phases or under specific stress conditions. To investigate the biological relevance of these rancRNAs, knock-outs were generated in H. volcanii which were used for phenotypic characterization studies. The rancRNA s194 showed association with the 50S ribosomal subunit in vitro and in vivo and was capable of inhibiting peptide bond formation and seems to inhibit translation in vitro. These preliminary data for the rancRNA s194 make it an interesting candidate for further functional studies to identify the molecular mechanisms by which rancRNAs can modulate protein biosynthesis. Characterization of further rancRNA candidates are also underway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As translation is the final step in gene expression it is particularly important to understand the processes involved in translation regulation. It was shown in the last years that a class of RNA, the non-protein-coding RNAs (ncRNAs), is involved in regulation of gene expression via various mechanisms [1]. Herein included is the prominent example of gene silencing caused by micro RNAs (miRNAs) and small interfering RNAs (siRNAs). Almost all of these ncRNA discovered so far target the mRNA in order to modulate protein biosynthesis, this is rather unexpected considering the crucial role of the ribosome during gene expression. However, recent data from our laboratory showed that there is a new class of RNAs among the well-studied ncRNAs that target the ribosome itself [2,3]. These so called ribosome-associated ncRNAs (rancRNAs) have an impact on translation regulation, mainly by interfering / modulating the rate of protein biosynthesis. Recent studies show the presence of small regulatory RNAs (sRNAs) in archaea which are involved in many biological processes including stress response and metabolic regulation [4]. To date the biological function and the targets of these archaeal sRNAs are only described for a few examples. There are reports of sRNAs binding to the 5’ as well as to the 3’ of mRNAs [5,6]. In addition to these findings, a tRNA derived fragment (tRF) of Valine tRNA was found in a genomic screen of RNAs associated with the ribosome in H. volcanii in our laboratory [3]. This Valine tRF seems to be processed in a stress-dependent manner and showed in vitro binding to the ribosome and inhibited in vitro translation. These results showed that Valine tRF is capable to regulate translation in H. volcanii by targeting the ribosome. The main goal of this project is to identify and describe novel potential regulatory rancRNAs in H. volcanii with the focus on intergenic candidates. Northern blot analyses already revealed interactions with the ribosome and showed differential expression patterns in response to stress conditions. To investigate the biological relevance of some of the ribosome-associated ncRNA candidates, knock-out and phenotypic characterization studies are done. The genomic knock out of a hypothetical ORF (198nt), where one putative rancRNA candidate (46nt) named IG33 was detected in the library at the beginning of the ORF, showed interesting growth phenotype under specific stress conditions. Furthermore a strain with an introduced start to stop codon mutation in this hypothetical ORF still shows the same phenotype indicating that rather the missing protein than the missing sRNA causes this growth phenotype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ribosome is a highly conserved cellular complex and constitutes the center of protein biosynthesis. As the ribosome consists to about 2/3 of ribosomal RNA (rRNA), the rRNA is involved in most steps of translation. In order to investigate the role of some defined rRNA residues in different aspects of translation we use the atomic mutagenesis approach. This method allows the site-specific incorporation of unnatural nucleosides into the rRNA in the context of the complete 70S from Thermus aquaticus, and thereby exceeds the possibilities of conventional mutagenesis. We first studied ribosome-stimulated EF-G GTP hydrolysis. Here, we could show that the non-bridging phosphate oxygen of A2662, which is part of the Sarcin-Ricin-Loop, is required for EF-G GTPase activation by the ribosome. EF-G GTPase is a crucial step for tRNA translocation from the A- to the P-site, and from the P- to the E-site, respectively. We furthermore used the atomic mutagenesis approach to more precisely characterize the 23S rRNA functional groups involved in E-site tRNA binding. While the ribosomal A- and P-sites have been functionally well characterized in the past, the contribution of the E-site to protein biosynthesis is still poorly understood in molecular terms. Our data disclose the importance of the highly conserved E-site base pair G2421-C2395 for effective translation. Ribosomes with a disrupted G2421-C2395 base pair are defective in tRNA binding to the E-site. This results in an impaired translation of genuine mRNAs, while homo-polymeric templates are not affected. Cumulatively our data emphasize the importance of E-site tRNA occupancy and in particular the intactness of the 23S rRNA base pair G2421-C2395 for productive protein biosynthesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules [1]. Here we present evidence that tRFs from the archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii [2]. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-bound non-protein-coding RNA (ncRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production [1].