997 resultados para Problem Resolution
Resumo:
The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. In particular, crosshole ground-penetrating radar (GPR) tomography has shown much promise in hydrology because of its ability to provide highly detailed images of subsurface radar wave velocity, which is strongly linked to soil water content. Here, we develop and demonstrate a procedure for inverting together multiple crosshole GPR data sets in order to characterize the spatial distribution of radar wave velocity below the water table at the Boise Hydrogeophysical Research Site (BHRS) near Boise, Idaho, USA. Specifically, we jointly invert 31 intersecting crosshole GPR profiles to obtain a highly resolved and consistent radar velocity model along the various profile directions. The model is found to be strongly correlated with complementary neutron porosity-log data and is further corroborated by larger-scale structural information at the BHRS. This work is an important prerequisite to using crosshole GPR data together with existing hydrological measurements for improved groundwater flow and contaminant transport modeling.
Resumo:
Geophysical techniques can help to bridge the inherent gap with regard to spatial resolution and the range of coverage that plagues classical hydrological methods. This has lead to the emergence of the new and rapidly growing field of hydrogeophysics. Given the differing sensitivities of various geophysical techniques to hydrologically relevant parameters and their inherent trade-off between resolution and range the fundamental usefulness of multi-method hydrogeophysical surveys for reducing uncertainties in data analysis and interpretation is widely accepted. A major challenge arising from such endeavors is the quantitative integration of the resulting vast and diverse database in order to obtain a unified model of the probed subsurface region that is internally consistent with all available data. To address this problem, we have developed a strategy towards hydrogeophysical data integration based on Monte-Carlo-type conditional stochastic simulation that we consider to be particularly suitable for local-scale studies characterized by high-resolution and high-quality datasets. Monte-Carlo-based optimization techniques are flexible and versatile, allow for accounting for a wide variety of data and constraints of differing resolution and hardness and thus have the potential of providing, in a geostatistical sense, highly detailed and realistic models of the pertinent target parameter distributions. Compared to more conventional approaches of this kind, our approach provides significant advancements in the way that the larger-scale deterministic information resolved by the hydrogeophysical data can be accounted for, which represents an inherently problematic, and as of yet unresolved, aspect of Monte-Carlo-type conditional simulation techniques. We present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on pertinent synthetic data and then applied to corresponding field data collected at the Boise Hydrogeophysical Research Site near Boise, Idaho, USA.
Resumo:
Although fetal anatomy can be adequately viewed in new multi-slice MR images, many critical limitations remain for quantitative data analysis. To this end, several research groups have recently developed advanced image processing methods, often denoted by super-resolution (SR) techniques, to reconstruct from a set of clinical low-resolution (LR) images, a high-resolution (HR) motion-free volume. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has been quite attracted by Total Variation energies because of their ability in edge preserving but only standard explicit steepest gradient techniques have been applied for optimization. In a preliminary work, it has been shown that novel fast convex optimization techniques could be successfully applied to design an efficient Total Variation optimization algorithm for the super-resolution problem. In this work, two major contributions are presented. Firstly, we will briefly review the Bayesian and Variational dual formulations of current state-of-the-art methods dedicated to fetal MRI reconstruction. Secondly, we present an extensive quantitative evaluation of our SR algorithm previously introduced on both simulated fetal and real clinical data (with both normal and pathological subjects). Specifically, we study the robustness of regularization terms in front of residual registration errors and we also present a novel strategy for automatically select the weight of the regularization as regards the data fidelity term. Our results show that our TV implementation is highly robust in front of motion artifacts and that it offers the best trade-off between speed and accuracy for fetal MRI recovery as in comparison with state-of-the art methods.
Resumo:
Thèse réalisée en cotutelle avec l'Université d'Avignon.
Resumo:
In this paper we investigate the problem of cache resolution in a mobile peer to peer ad hoc network. In our vision cache resolution should satisfy the following requirements: (i) it should result in low message overhead and (ii) the information should be retrieved with minimum delay. In this paper, we show that these goals can be achieved by splitting the one hop neighbours in to two sets based on the transmission range. The proposed approach reduces the number of messages flooded in to the network to find the requested data. This scheme is fully distributed and comes at very low cost in terms of cache overhead. The experimental results gives a promising result based on the metrics of studies.
Resumo:
Super Resolution problem is an inverse problem and refers to the process of producing a High resolution (HR) image, making use of one or more Low Resolution (LR) observations. It includes up sampling the image, thereby, increasing the maximum spatial frequency and removing degradations that arise during the image capture namely aliasing and blurring. The work presented in this thesis is based on learning based single image super-resolution. In learning based super-resolution algorithms, a training set or database of available HR images are used to construct the HR image of an image captured using a LR camera. In the training set, images are stored as patches or coefficients of feature representations like wavelet transform, DCT, etc. Single frame image super-resolution can be used in applications where database of HR images are available. The advantage of this method is that by skilfully creating a database of suitable training images, one can improve the quality of the super-resolved image. A new super resolution method based on wavelet transform is developed and it is better than conventional wavelet transform based methods and standard interpolation methods. Super-resolution techniques based on skewed anisotropic transform called directionlet transform are developed to convert a low resolution image which is of small size into a high resolution image of large size. Super-resolution algorithm not only increases the size, but also reduces the degradations occurred during the process of capturing image. This method outperforms the standard interpolation methods and the wavelet methods, both visually and in terms of SNR values. Artifacts like aliasing and ringing effects are also eliminated in this method. The super-resolution methods are implemented using, both critically sampled and over sampled directionlets. The conventional directionlet transform is computationally complex. Hence lifting scheme is used for implementation of directionlets. The new single image super-resolution method based on lifting scheme reduces computational complexity and thereby reduces computation time. The quality of the super resolved image depends on the type of wavelet basis used. A study is conducted to find the effect of different wavelets on the single image super-resolution method. Finally this new method implemented on grey images is extended to colour images and noisy images
Resumo:
We deal with the numerical solution of heat conduction problems featuring steep gradients. In order to solve the associated partial differential equation a finite volume technique is used and unstructured grids are employed. A discrete maximum principle for triangulations of a Delaunay type is developed. To capture thin boundary layers incorporating steep gradients an anisotropic mesh adaptation technique is implemented. Computational tests are performed for an academic problem where the exact solution is known as well as for a real world problem of a computer simulation of the thermoregulation of premature infants.
Resumo:
The accurate prediction of the biochemical function of a protein is becoming increasingly important, given the unprecedented growth of both structural and sequence databanks. Consequently, computational methods are required to analyse such data in an automated manner to ensure genomes are annotated accurately. Protein structure prediction methods, for example, are capable of generating approximate structural models on a genome-wide scale. However, the detection of functionally important regions in such crude models, as well as structural genomics targets, remains an extremely important problem. The method described in the current study, MetSite, represents a fully automatic approach for the detection of metal-binding residue clusters applicable to protein models of moderate quality. The method involves using sequence profile information in combination with approximate structural data. Several neural network classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy of 94.5%. The method was demonstrated to identify metal-binding sites correctly in LiveBench targets where no obvious metal-binding sequence motifs were detectable using InterPro. Accurate detection of metal sites was shown to be feasible for low-resolution predicted structures generated using mGenTHREADER where no side-chain information was available. High-scoring predictions were observed for a recently solved hypothetical protein from Haemophilus influenzae, indicating a putative metal-binding site.
Resumo:
Global climate and weather models tend to produce rainfall that is too light and too regular over the tropical ocean. This is likely because of convective parametrizations, but the problem is not well understood. Here, distributions of precipitation rates are analyzed for high-resolution UK Met Office Unified Model simulations of a 10 day case study over a large tropical domain (∼20°S–20°N and 42°E–180°E). Simulations with 12 km grid length and parametrized convection have too many occurrences of light rain and too few of heavier rain when interpolated onto a 1° grid and compared with Tropical Rainfall Measuring Mission (TRMM) data. In fact, this version of the model appears to have a preferred scale of rainfall around 0.4 mm h−1 (10 mm day−1), unlike observations of tropical rainfall. On the other hand, 4 km grid length simulations with explicit convection produce distributions much more similar to TRMM observations. The apparent preferred scale at lighter rain rates seems to be a feature of the convective parametrization rather than the coarse resolution, as demonstrated by results from 12 km simulations with explicit convection and 40 km simulations with parametrized convection. In fact, coarser resolution models with explicit convection tend to have even more heavy rain than observed. Implications for models using convective parametrizations, including interactions of heating and moistening profiles with larger scales, are discussed. One important implication is that the explicit convection 4 km model has temperature and moisture tendencies that favour transitions in the convective regime. Also, the 12 km parametrized convection model produces a more stable temperature profile at its extreme high-precipitation range, which may reduce the chance of very heavy rainfall. Further study is needed to determine whether unrealistic precipitation distributions are due to some fundamental limitation of convective parametrizations or whether parametrizations can be improved, in order to better simulate these distributions.
Resumo:
We show that the four-dimensional variational data assimilation method (4DVar) can be interpreted as a form of Tikhonov regularization, a very familiar method for solving ill-posed inverse problems. It is known from image restoration problems that L1-norm penalty regularization recovers sharp edges in the image more accurately than Tikhonov, or L2-norm, penalty regularization. We apply this idea from stationary inverse problems to 4DVar, a dynamical inverse problem, and give examples for an L1-norm penalty approach and a mixed total variation (TV) L1–L2-norm penalty approach. For problems with model error where sharp fronts are present and the background and observation error covariances are known, the mixed TV L1–L2-norm penalty performs better than either the L1-norm method or the strong constraint 4DVar (L2-norm)method. A strength of the mixed TV L1–L2-norm regularization is that in the case where a simplified form of the background error covariance matrix is used it produces a much more accurate analysis than 4DVar. The method thus has the potential in numerical weather prediction to overcome operational problems with poorly tuned background error covariance matrices.
Resumo:
The results of coupled high resolution global models (CGCMs) over South America are discussed. HiGEM1.2 and HadGEM1.2 simulations, with horizontal resolution of ~90 and 135 km, respectively, are compared. Precipitation estimations from CMAP (Climate Prediction Center—Merged Analysis of Precipitation), CPC (Climate Prediction Center) and GPCP (Global Precipitation Climatology Project) are used for validation. HiGEM1.2 and HadGEM1.2 simulated seasonal mean precipitation spatial patterns similar to the CMAP. The positioning and migration of the Intertropical Convergence Zone and of the Pacific and Atlantic subtropical highs are correctly simulated by the models. In HiGEM1.2 and HadGEM1.2, the intensity and locations of the South Atlantic Convergence Zone are in agreement with the observed dataset. The simulated annual cycles are in phase with estimations of rainfall for most of the six regions considered. An important result is that HiGEM1.2 and HadGEM1.2 eliminate a common problem of coarse resolution CGCMs, which is the simulation of a semiannual cycle of precipitation due to the semiannual solar forcing. Comparatively, the use of high resolution in HiGEM1.2 reduces the dry biases in the central part of Brazil during austral winter and spring and in most part of the year over an oceanic box in eastern Uruguay.
Resumo:
Data assimilation (DA) systems are evolving to meet the demands of convection-permitting models in the field of weather forecasting. On 19 April 2013 a special interest group meeting of the Royal Meteorological Society brought together UK researchers looking at different aspects of the data assimilation problem at high resolution, from theory to applications, and researchers creating our future high resolution observational networks. The meeting was chaired by Dr Sarah Dance of the University of Reading and Dr Cristina Charlton-Perez from the MetOffice@Reading. The purpose of the meeting was to help define the current state of high resolution data assimilation in the UK. The workshop assembled three main types of scientists: observational network specialists, operational numerical weather prediction researchers and those developing the fundamental mathematical theory behind data assimilation and the underlying models. These three working areas are intrinsically linked; therefore, a holistic view must be taken when discussing the potential to make advances in high resolution data assimilation.
Resumo:
Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diversity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller ""unplaced"" groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees. Consistent with more weakly supported results from previous studies, our analyses support the monophyly of the four major clades and the relationships among them. Most importantly, Asterales are inferred to be sister to a clade containing Apiales and Dipsacales. Paracryphiaceae is consistently placed sister to the Dipsacales. However, the exact relationships of Bruniaceae, Columelliaceae, and an Escallonia clade depended upon the dataset. Areas of poor resolution in combined analyses may be partly explained by conflict between the coding and non-coding data partitions. We discuss the implications of these results for our understanding of campanulid phylogeny and evolution, paying special attention to how our findings bear on character evolution and biogeography in Dipsacales.
Resumo:
In this paper we show how to extend clausal temporal resolution to the ground eventuality fragment of monodic first-order temporal logic, which has recently been introduced by Hodkinson, Wolter and Zakharyaschev. While a finite Hilbert-like axiomatization of complete monodic first order temporal logic was developed by Wolter and Zakharyaschev, we propose a temporal resolution-based proof system which reduces the satisfiability problem for ground eventuality monodic first-order temporal formulae to the satisfiability problem for formulae of classical first-order logic.
Resumo:
We investigate and solve in the context of general relativity the apparent paradox which appears when bodies floating in a background fluid are set in relativistic motion. Suppose some macroscopic body, say, a submarine designed to lie just in equilibrium when it rests (totally) immersed in a certain background fluid. The puzzle arises when different observers are asked to describe what is expected to happen when the submarine is given some high velocity parallel to the direction of the fluid surface. on the one hand, according to observers at rest with the fluid, the submarine would contract and, thus, sink as a consequence of the density increase. on the other hand, mariners at rest with the submarine using an analogous reasoning for the fluid elements would reach the opposite conclusion. The general relativistic extension of the Archimedes law for moving bodies shows that the submarine sinks. As an extra bonus, this problem suggests a new gedankenexperiment for the generalized second law of thermodynamics.