984 resultados para Probabilistic load flow
Resumo:
This paper deals with results of a research and development (R&D) project in cooperation with Electric Power Distribution Company in São Paulo (Brazil) regarding the development and experimental analysis of a new concept of power drive system suitable for application in traction systems of electrical vehicles pulled by electrical motors, which can be powered by urban DC or AC distribution networks. The proposed front-end structure is composed by five boost power cells in interleaving connection, operating in discontinuous conduction mode as AC-DC converter, or as DC-DC converter, in order to provide the proper DC output voltage range required by DC or AC adjustable speed drivers. Therefore, when supplied by single-phase AC distribution networks, and operating as AC-DC converter, it is capable to provide high power factor, reduced harmonic distortion in the input current, complying with the restrictions imposed by the IEC 61000-3-4 standards resulting in significant improvements for the trolleybuses systems efficiency and for the urban distribution network costs. Considering the compliance with input current restrictions imposed by IEC 61000-3-4 standards, two digital control strategies were evaluated. The digital controller has been implemented using a low cost FPGA (XC3S200) and developed totally using a hardware description language VHDL and fixed point arithmetic. Experimental results from a 15 kW low power scale prototype operating in DC and AC conditions are presented, in order to verify the feasibility and performance of the proposed system. © 2009 IEEE.
Resumo:
In this paper, the calculation of the steady-state operation of a radial/meshed electrical distribution system (EDS) through solving a system of linear equations (non-iterative load flow) is presented. The constant power type demand of the EDS is modeled through linear approximations in terms of real and imaginary parts of the voltage taking into account the typical operating conditions of the EDS's. To illustrate the use of the proposed set of linear equations, a linear model for the optimal power flow with distributed generator is presented. Results using some test and real systems show the excellent performance of the proposed methodology when is compared with conventional methods. © 2011 IEEE.
Resumo:
In this paper the point estimation method is applied to solve the probabilistic power flow problem for unbalanced three-phase distribution systems. Through the implementation of this method the probability distribution functions of voltages (magnitude and angle) as well as the active and reactive power flows in the branches of the distribution system are determined. Two different approaches of the point estimation method are presented (2m and 2m+1 point schemes). In order to test the proposed methodology, the IEEE 34 and 123 bus test systems are used. The results obtained with both schemes are compared with the ones obtained by a Monte Carlo Simulation (MCS).
Resumo:
In the network reconfiguration context, the challenge nowadays is to improve the system in order to get intelligent systems that are able to monitor the network and produce refined information to support the operator decisions in real time, this because the network is wide, ramified and in some places difficult to access. The objective of this paper is to present the first results of the network reconfiguration algorithm that has been developed to CEMIG-D. The algorithm's main idea is to provide a new network configuration, after an event (fault or study case), based on an initial condition and aiming to minimize the affected load, considering the restrictions of load flow equations, maximum capacity of the lines as well as equipments and substations, voltage limits and system radial operation. Initial tests were made considering real data from the system, provided by CEMIG-D and it reveals very promising results. © 2013 IEEE.
Resumo:
This paper provides a contribution to the contingency analysis of electric power systems under steady state conditions. An alternative methodology is presented for static contingency analyses that only use continuation methods and thus provides an accurate determination of the loading margin. Rather than starting from the base case operating point, the proposed continuation power flow obtains the post-contingency loading margins starting from the maximum loading and using a bus voltage magnitude as a parameter. The branch selected for the contingency evaluation is parameterised using a scaling factor, which allows its gradual removal and assures the continuation power flow convergence for the cases where the method would diverge for the complete transmission line or transformer removal. The applicability and effectiveness of the proposed methodology have been investigated on IEEE test systems (14, 57 and 118 buses) and compared with the continuation power flow, which obtains the post-contingency loading margin starting from the base case solution. In general, for most of the analysed contingencies, few iterations are necessary to determine the post-contingency maximum loading point. Thus, a significant reduction in the global number of iterations is achieved. Therefore, the proposed methodology can be used as an alternative technique to verify and even to obtain the list of critical contingencies supplied by the electric power systems security analysis function. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Este trabalho tem como objetivo apresentar um aplicativo para auxiliar no planejamento de sistemas elétricos, através de uma metodologia para controle de tensão e minimização das perdas, através da otimização da injeção de reativos, mantendo a tensão nos barramentos dentro de limites pré estabelecidos. A metodologia desenvolvida é baseada em um sistema hibrido, que utiliza inteligência computacional baseada em um algoritmo genético acoplado a um programa de fluxo de carga (ANAREDE), que interagem para produzir uma solução ótima. Os resultados obtidos mostram que a técnica baseada no algoritmo genético é bem adequada ao tipo de problema ora tratado referente a minimização de perdas reativas e a melhoria do perfil da tensão em redes elétricas, sendo este atualmente um problema crítico em parte do Sistema Interligado Nacional (SIN).