955 resultados para Priestley-Taylor formulation
Resumo:
In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.
Resumo:
This thesis described the synthesis of an L-leucine conjugate of the biodegradable polymer, chitosan and its potential application for the development of controlled release nanoparticulate dry powder inhaler (DPI) formulations. The study demonstrated that the physicochemical properties of conjugated chitosan nanoparticles had favourable effects on the dispersibility and controlled release profile of a model drug. The toxicity profile of the nanoparticulate formulation revealed promising outcome for its use in pulmonary delivery. The chitosan conjugate produced in this project would be useful for the application of polymer nanoparticulate systems for efficient lung delivery of drugs.
Resumo:
Hedonic pricing techniques can be used to generate quantitative information useful to the project appraiser at various stages of the project cycle, most notably project formulation and investment appraisal. To illustrate, a hedonic pricing model is applied to marina berthing charges in England and Wales. The technique determines the relevant marina facilities that are reflected in marina rental price. The contribution of the key marina facilities is expressed in monetary terms as the contribution to cost per overall rental price per foot.
Resumo:
Zinc-rich ethyl silicate coatings are quite successful in protecting steel against corrosion under severe exposing conditions. In spite of providing excellent cathodic protection to steel structure after film curing, two-component zinc-rich ethyl silicate coatings have some limitations, one of which is inadequate shelf life as a result of in-can binder gelation. In this work, the preparation steps of ethyl silicate such as pre-hydrolysis, dehydration and organometallic reactions were surveyed and herein an approach towards understanding the cause and effect relationship of the use of ingredients is presented. The effects of water and catalytic acid dosages on gel time under accelerated conditions and the effect of alcoholic solvent order on the rate of the hydrolysis and dehydration reactions were studied via Karl-Fischer test determining the water content of hydrolysate. A thriving optimization in shelf life without any loss in physical–mechanical characteristics of the final film (e.g. hardness, adhesion, solvent and salt spray resistance) was obtained.
Resumo:
Plasmid DMA offers the promise of a new generation of pharmaceuticals that will address the often overlooked issue of vaccine production by offering a simple and reproducible method for producing a vaccine. Through reverse engineering, production could be reduced from up to 9 months to as little as 1 month. Simplified development and faster turn-around times means that DMA offers a solution to the vaccine crisis and will help to contain future viral outbreaks by enabling the production of a vaccine against new viral strains in the shortest possible time. Work currently being completed in the area of plasmid DMA production, purification and encapsulation will be presented.
Resumo:
This series of research vignettes is aimed at sharing current and interesting research findings from our team of international Entrepreneurship researchers. This vignette, written by Dr Norin Arshed, Professor Sara Carter and Professor Colin Mason examines whether the ineffectiveness of enterprise policy can be attributed to the formulation of the enterprise policy itself.
Resumo:
The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularisation on the interface is not provided by surface tension, but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalise high velocities and prevent blow-up of the unregularised solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this selection of 1/2 by kinetic undercooling is qualitatively similar to the well-known analogue with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analogue with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension, and numerically taking the limit that the surface tension vanishes.
Resumo:
Inappropriate food or medication texture in patients with dysphagia is the most significant risk factor for pneumonia. Dysphagia is prevalent within care homes for the older person as it is largely found in conditions associated with ageing. This study was designed to determine the appropriateness of medication formulation choices in elderly patients with dysphagia in care homes.
Resumo:
This paper combines experimental data with simple mathematical models to investigate the influence of spray formulation type and leaf character (wettability) on shatter, bounce and adhesion of droplets impacting with cotton, rice and wheat leaves. Impaction criteria that allow for different angles of the leaf surface and the droplet impact trajectory are presented; their predictions are based on whether combinations of droplet size and velocity lie above or below bounce and shatter boundaries. In the experimental component, real leaves are used, with all their inherent natural variability. Further, commercial agricultural spray nozzles are employed, resulting in a range of droplet characteristics. Given this natural variability, there is broad agreement between the data and predictions. As predicted, the shatter of droplets was found to increase as droplet size and velocity increased, and the surface became harder to wet. Bouncing of droplets occurred most frequently on hard to wet surfaces with high surface tension mixtures. On the other hand, a number of small droplets with low impact velocity were observed to bounce when predicted to lie well within the adhering regime. We believe this discrepancy between the predictions and experimental data could be due to air layer effects that were not taken into account in the current bounce equations. Other discrepancies between experiment and theory are thought to be due to the current assumption of a dry impact surface, whereas, in practice, the leaf surfaces became increasingly covered with fluid throughout the spray test runs.
Resumo:
We defined a new statistical fluid registration method with Lagrangian mechanics. Although several authors have suggested that empirical statistics on brain variation should be incorporated into the registration problem, few algorithms have included this information and instead use regularizers that guarantee diffeomorphic mappings. Here we combine the advantages of a large-deformation fluid matching approach with empirical statistics on population variability in anatomy. We reformulated the Riemannian fluid algorithmdeveloped in [4], and used a Lagrangian framework to incorporate 0 th and 1st order statistics in the regularization process. 92 2D midline corpus callosum traces from a twin MRI database were fluidly registered using the non-statistical version of the algorithm (algorithm 0), giving initial vector fields and deformation tensors. Covariance matrices were computed for both distributions and incorporated either separately (algorithm 1 and algorithm 2) or together (algorithm 3) in the registration. We computed heritability maps and two vector and tensorbased distances to compare the power and the robustness of the algorithms.
Resumo:
Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A concentrated plasticity formulation suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in this paper. This formulation, referred to as the refined plastic hinge method, implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling.
Resumo:
In Australia, the legal basis for the detention and restraint of people with intellectual impairment is ad hoc and unclear. There is no comprehensive legal framework that authorises and regulates the detention of, for example, older people with dementia in locked wards or in residential aged care, people with disability in residential services or people with acquired brain injury in hospital and rehabilitation services. This paper focuses on whether the common law doctrine of necessity (or its statutory equivalents) should have a role in permitting the detention and restraint of people with disabilities. Traditionally, the defence of necessity has been recognised as an excuse, where the defendant, faced by a situation of imminent peril, is excused from the criminal or civil liability because of the extraordinary circumstances they find themselves in. In the United Kingdom, however, in In re F (Mental Patient: Sterilisation) and R v Bournewood Community and Mental Health NHS Trust, ex parte L, the House of Lords broadened the defence so that it operated as a justification for treatment, detention and restraint outside of the emergency context. This paper outlines the distinction between necessity as an excuse and as a defence, and identifies a number of concerns with the latter formulation: problems of democracy, integrity, obedience, objectivity and safeguards. Australian courts are urged to reject the United Kingdom approach and retain an excuse-based defence, as the risks of permitting the essentially utilitarian model of necessity as a justification are too great.
Resumo:
Compulsators are power sources of choice for use in electromagnetic launchers and railguns. These devices hold the promise of reducing unit costs of payload to orbit. In an earlier work, the author had calculated the current distribution in compulsator wires by considering the wire to be split into a finite number of separate wires. The present work develops an integral formulation of the problem of current distribution in compulsator wires which leads to an integrodifferential equation. Analytical solutions, including those for the integration constants, are obtained in closed form. The analytical solutions present a much clearer picture of the effect of various input parameters on the cross-sectional current distribution and point to ways in which the desired current density distribution can be achieved. Results are graphically presented and discussed, with particular reference to a 50-kJ compulsator in Bangalore. Finite-element analysis supports the results.
Resumo:
This paper presents three methodologies for determining optimum locations and magnitudes of reactive power compensation in power distribution systems. Method I and Method II are suitable for complex distribution systems with a combination of both radial and ring-main feeders and having different voltage levels. Method III is suitable for low-tension single voltage level radial feeders. Method I is based on an iterative scheme with successive powerflow analyses, with formulation and solution of the optimization problem using linear programming. Method II and Method III are essentially based on the steady state performance of distribution systems. These methods are simple to implement and yield satisfactory results comparable with the results of Method I. The proposed methods have been applied to a few distribution systems, and results obtained for two typical systems are presented for illustration purposes.
Resumo:
The specific objective of this paper is to develop a state space model of a tubular ammonia reactor which is the heart of an ammonia plant in a fertiliser complex. A ninth order model with three control inputs and two disturbance inputs is generated from the nonlinear distributed model using linearization and lumping approximations. The lumped model is chosen such that the steady state temperature at the exit of the catalyst bed computed from the simplified state space model is close enough to the one computed from the nonlinear steady state model. The model developed in this paper is very useful for the design of continuous/discrete versions of single variable/multivariable control algorithms.