982 resultados para Prediction Error


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decades there was a great development in the study of control systems to attenuate the harmful effect of natural events in great structures, as buildings and bridges. Magnetorheological fluid (MR), that is an intelligent material, has been considered in many proposals of project for these controllers. This work presents the controller design using feedback of states through LMI (Linear Matrix Inequalities) approach. The experimental test were carried out in a structure with two degrees of freedom with a connected shock absorber MR. Experimental tests were realized in order to specify the features of this semi-active controller. In this case, there exist states that are not measurable, so the feedback of the states involves the project of an estimator. The coupling of the MR damper causes a variation in dynamics properties, so an identification methods, based on experimental input/output signal was used to compare with the numerical application. The identification method of Prediction Error Methods - (PEM) was used to find the physical characteristics of the system through realization in modal space of states. This proposal allows the project of a semi-active control, where the main characteristic is the possibility of the variation of the damping coefficient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural damage identification is basically a nonlinear phenomenon; however, nonlinear procedures are not used currently in practical applications due to the complexity and difficulty for implementation of such techniques. Therefore, the development of techniques that consider the nonlinear behavior of structures for damage detection is a research of major importance since nonlinear dynamical effects can be erroneously treated as damage in the structure by classical metrics. This paper proposes the discrete-time Volterra series for modeling the nonlinear convolution between the input and output signals in a benchmark nonlinear system. The prediction error of the model in an unknown structural condition is compared with the values of the reference structure in healthy condition for evaluating the method of damage detection. Since the Volterra series separate the response of the system in linear and nonlinear contributions, these indexes are used to show the importance of considering the nonlinear behavior of the structure. The paper concludes pointing out the main advantages and drawbacks of this damage detection methodology. © (2013) Trans Tech Publications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biometria - IBB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV–Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV–Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 105 ± 1.90 105 cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV–VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Genética e Melhoramento Animal - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to evaluate accuracy, precision and robustness of two methods to obtain silage samples, in comparison with extraction of liquor by manual screw-press. Wet brewery residue alone or combined with soybean hulls and citrus pulp were ensiled in laboratory silos. Liquor was extracted by a manual screw-press and a 2-mL aliquot was fixed with 0.4 mL formic acid. Two 10-g silage samples from each silo were diluted in 20 mL deionized water or 17% formic acid solution (alternative methods). Aliquots obtained by the three methods were used to determine the silage contents of fermentation end-products. The accuracy of the alternative methods was evaluated by comparing mean bias of estimates obtained by manual screw-press and by alternative methods, whereas precision was assessed by the root mean square prediction error and the residual error. Robustness was determined by studying the interaction between bias and chemical components, pH, in vitro dry matter digestibility (IVDMD) and buffer capacity. The 17% formic acid method was more accurate for estimating acetic, butyric and lactic acids, although it resulted in low overestimates of propionic acid and underestimates of ethanol. The deionized water method overestimated acetic and propionic acids and slightly underestimated ethanol. The 17% formic acid method was more precise than deionized water for estimating all organic acids and ethanol. The robustness of each method with respect to variation in the silage chemical composition, IVDMD and pH is dependent on the fermentation end-product at evaluation. The robustness of the alternative methods seems to be critical at the determination of lactic acid and ethanol contents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To derive tests for randomness, nonlinear-independence, and stationarity, we combine surrogates with a nonlinear prediction error, a nonlinear interdependence measure, and linear variability measures, respectively. We apply these tests to intracranial electroencephalographic recordings (EEG) from patients suffering from pharmacoresistant focal-onset epilepsy. These recordings had been performed prior to and independent from our study as part of the epilepsy diagnostics. The clinical purpose of these recordings was to delineate the brain areas to be surgically removed in each individual patient in order to achieve seizure control. This allowed us to define two distinct sets of signals: One set of signals recorded from brain areas where the first ictal EEG signal changes were detected as judged by expert visual inspection ("focal signals") and one set of signals recorded from brain areas that were not involved at seizure onset ("nonfocal signals"). We find more rejections for both the randomness and the nonlinear-independence test for focal versus nonfocal signals. In contrast more rejections of the stationarity test are found for nonfocal signals. Furthermore, while for nonfocal signals the rejection of the stationarity test increases the rejection probability of the randomness and nonlinear-independence test substantially, we find a much weaker influence for the focal signals. In consequence, the contrast between the focal and nonfocal signals obtained from the randomness and nonlinear-independence test is further enhanced when we exclude signals for which the stationarity test is rejected. To study the dependence between the randomness and nonlinear-independence test we include only focal signals for which the stationarity test is not rejected. We show that the rejection of these two tests correlates across signals. The rejection of either test is, however, neither necessary nor sufficient for the rejection of the other test. Thus, our results suggest that EEG signals from epileptogenic brain areas are less random, more nonlinear-dependent, and more stationary compared to signals recorded from nonepileptogenic brain areas. We provide the data, source code, and detailed results in the public domain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The Anesthetic Conserving Device (AnaConDa) uncouples delivery of a volatile anesthetic (VA) from fresh gas flow (FGF) using a continuous infusion of liquid volatile into a modified heat-moisture exchanger capable of adsorbing VA during expiration and releasing adsorbed VA during inspiration. It combines the simplicity and responsiveness of high FGF with low agent expenditures. We performed in vitro characterization of the device before developing a population pharmacokinetic model for sevoflurane administration with the AnaConDa, and retrospectively testing its performance (internal validation). MATERIALS AND METHODS: Eighteen females and 20 males, aged 31-87, BMI 20-38, were included. The end-tidal concentrations were varied and recorded together with the VA infusion rates into the device, ventilation and demographic data. The concentration-time course of sevoflurane was described using linear differential equations, and the most suitable structural model and typical parameter values were identified. The individual pharmacokinetic parameters were obtained and tested for covariate relationships. Prediction errors were calculated. RESULTS: In vitro studies assessed the contribution of the device to the pharmacokinetic model. In vivo, the sevoflurane concentration-time courses on the patient side of the AnaConDa were adequately described with a two-compartment model. The population median absolute prediction error was 27% (interquartile range 13-45%). CONCLUSION: The predictive performance of the two-compartment model was similar to that of models accepted for TCI administration of intravenous anesthetics, supporting open-loop administration of sevoflurane with the AnaConDa. Further studies will focus on prospective testing and external validation of the model implemented in a target-controlled infusion device.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a convenient and fast HPLC procedure we determined serum concentrations of the fungistatic agent 5-fluorocytosine (5-FC) in 375 samples from 60 patients treated with this drug. The mean trough concentration (n = 127) was 64.3 mg/l (range: 11.8-208.0 mg/l), the mean peak concentration (n = 122) was 99.9 mg/l (range: 25.6-263.8 mg/l), the mean nonpeak/nontrough concentration (n = 126) was 80.1 mg/l (range: 10.5-268.0 mg/l). Totally 134 (35.7%) samples were outside the therapeutic range (25-100 mg/l), 108 (28.8%) being too high, 26 (6.9%) being too low. Forty-four (73%) patients showed 5-FC serum concentrations outside the therapeutic range at least once during the treatment course. In a prospective study we performed 65 dosage predictions on 30 patients by use of a 3-point method previously developed for aminoglycoside dosage adaptation. The mean absolute prediction error of the dosage adaptation was +0.7 mg/l (range: -26.0 to +28.0 mg/l). The root mean square prediction error was 10.7 mg/l. The mean predicted concentration (65.3 mg/l) agreed very well with the mean measured concentration (64.6 mg/l). The frequency distribution of 5-FC serum concentrations indicates that 5-FC monitoring is important. The applied pharmacokinetic method allows individual adaptations of 5-FC dosage with a clinically acceptable prediction error.