976 resultados para Power coefficient


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many well-established statistical methods in genetics were developed in a climate of severe constraints on computational power. Recent advances in simulation methodology now bring modern, flexible statistical methods within the reach of scientists having access to a desktop workstation. We illustrate the potential advantages now available by considering the problem of assessing departures from Hardy-Weinberg (HW) equilibrium. Several hypothesis tests of HW have been established, as well as a variety of point estimation methods for the parameter which measures departures from HW under the inbreeding model. We propose a computational, Bayesian method for assessing departures from HW, which has a number of important advantages over existing approaches. The method incorporates the effects-of uncertainty about the nuisance parameters--the allele frequencies--as well as the boundary constraints on f (which are functions of the nuisance parameters). Results are naturally presented visually, exploiting the graphics capabilities of modern computer environments to allow straightforward interpretation. Perhaps most importantly, the method is founded on a flexible, likelihood-based modelling framework, which can incorporate the inbreeding model if appropriate, but also allows the assumptions of the model to he investigated and, if necessary, relaxed. Under appropriate conditions, information can be shared across loci and, possibly, across populations, leading to more precise estimation. The advantages of the method are illustrated by application both to simulated data and to data analysed by alternative methods in the recent literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The precision of quasioptical null-balanced bridge instruments for transmission and reflection coefficient measurements at millimeter and submillimeter wavelengths is analyzed. A Jones matrix analysis is used to describe the amount of power reaching the detector as a function of grid angle orientation, sample transmittance/reflectance and phase delay. An analysis is performed of the errors involved in determining the complex transmission and reflection coefficient after taking into account the quantization error in the grid angle and micrometer readings, the transmission or reflection coefficient of the sample, the noise equivalent power of the detector, the source power and the post-detection bandwidth. For a system fitted with a rotating grid with resolution of 0.017 rad and a micrometer quantization error of 1 μm, a 1 mW source, and a detector with a noise equivalent power 5×10−9 W Hz−1/2, the maximum errors at an amplitude transmission or reflection coefficient of 0.5 are below ±0.025.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to test if the critical power model can be used to determine the critical rest interval (CRI) between vertical jumps. Ten males performed intermittent countermovement jumps on a force platform with different resting periods (4.1 +/- 0.3 s, 5.0 +/- 0.4 s, 5.9 +/- 0.6 s). Jump trials were interrupted when participants could no longer maintain 95% of their maximal jump height. After interruption, number of jumps, total exercise duration and total external work were computed. Time to exhaustion (s) and total external work (J) were used to solve the equation Work = a + b . time. The CRI (corresponding to the shortest resting interval that allowed jump height to be maintained for a long time without fatigue) was determined dividing the average external work needed to jump at a fixed height (J) by b parameter (J/s). in the final session, participants jumped at their calculated CRI. A high coefficient of determination (0.995 +/- 0.007) and the CRI (7.5 +/- 1.6 s) were obtained. In addition, the longer the resting period, the greater the number of jumps (44 13, 71 28, 105 30, 169 53 jumps; p<0.0001), time to exhaustion (179 +/- 50, 351 +/- 120, 610 +/- 141, 1,282 +/- 417 s; p<0.0001) and total external work (28.0 +/- 8.3, 45.0 +/- 16.6, 67.6 +/- 17.8, 111.9 +/- 34.6 kJ; p<0.0001). Therefore, the critical power model may be an alternative approach to determine the CRI during intermittent vertical jumps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a family of two-dimensional nonlinear area-preserving mappings that generalize the Chirikov standard map and model a variety of periodically forced systems. The action variable diffuses in increments whose phase is controlled by a negative power of the action and hence effectively uncorrelated for small actions, leading to a chaotic sea in phase space. For larger values of the action the phase space is mixed and contains a family of elliptic islands centered on periodic orbits and invariant Kolmogorov-Arnold-Moser (KAM) curves. The transport of particles along the phase space is considered by starting an ensemble of particles with a very low action and letting them evolve in the phase until they reach a certain height h. For chaotic orbits below the periodic islands, the survival probability for the particles to reach h is characterized by an exponential function, well modeled by the solution of the diffusion equation. On the other hand, when h reaches the position of periodic islands, the diffusion slows markedly. We show that the diffusion coefficient is scaling invariant with respect to the control parameter of the mapping when h reaches the position of the lowest KAM island. © 2013 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n(2)) and two-photon absorption coefficient (beta). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n(2) and beta. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723829]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this dissertation some novel indices for vulnerability and robustness assessment of power grids are presented. Such indices are mainly defined from the structure of transmission power grids, and with the aim of Blackout (BO) prevention and mitigation. Numerical experiments showing how they could be used alone or in coordination with pre-existing ones to reduce the effects of BOs are discussed. These indices are introduced inside 3 different sujects: The first subject is for taking a look into economical aspects of grids’ operation and their effects in BO propagation. Basically, simulations support that: the determination to operate the grid in the most profitable way could produce an increase in the size or frequency of BOs. Conversely, some uneconomical ways of supplying energy are shown to be less affected by BO phenomena. In the second subject new topological indices are devised to address the question of "which are the best buses to place distributed generation?". The combined use of two indices, is shown as a promising alternative for extracting grid’s significant features regarding robustness against BOs and distributed generation. For this purpose, a new index based on outage shift factors is used along with a previously defined electric centrality index. The third subject is on Static Robustness Analysis of electric networks, from a purely structural point of view. A pair of existing topological indices, (namely degree index and clustering coefficient), are combined to show how degradation of the network structure can be accelerated. Blackout simulations were carried out using the DC Power Flow Method and models of transmission networks from the USA and Europe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis is to develop a depth analysis of the inductive power transfer (or wireless power transfer, WPT) along a metamaterial composed of cells arranged in a planar configuration, in order to deliver power to a receiver sliding on them. In this way, the problem of the efficiency strongly affected by the weak coupling between emitter and receiver can be obviated, and the distance of transmission can significantly be increased. This study is made using a circuital approach and the magnetoinductive wave (MIW) theory, in order to simply explain the behavior of the transmission coefficient and efficiency from the circuital and experimental point of view. Moreover, flat spiral resonators are used as metamaterial cells, particularly indicated in literature for WPT metamaterials operating at MHz frequencies (5-30 MHz). Finally, this thesis presents a complete electrical characterization of multilayer and multiturn flat spiral resonators and, in particular, it proposes a new approach for the resistance calculation through finite element simulations, in order to consider all the high frequency parasitic effects. Multilayer and multiturn flat spiral resonators are studied in order to decrease the operating frequency down to kHz, maintaining small external dimensions and allowing the metamaterials to be supplied by electronic power converters (resonant inverters).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor budding is recognized by the World Health Organization as an additional prognostic factor in colorectal cancer but remains unreported in diagnostic work due to the absence of a standardized scoring method. This study aims to assess the most prognostic and reproducible scoring systems for tumor budding in colorectal cancer. Tumor budding on pancytokeratin-stained whole tissue sections from 105 well-characterized stage II patients was scored by 3 observers using 7 methods: Hase, Nakamura, Ueno, Wang (conventional and rapid method), densest high-power field, and 10 densest high-power fields. The predictive value for clinicopathologic features, the prognostic significance, and interobserver variability of each scoring method was analyzed. Pancytokeratin staining allowed accurate evaluation of tumor buds. Interobserver agreement for 3 observers was excellent for densest high-power field (intraclass correlation coefficient, 0.83) and 10 densest high-power fields (intraclass correlation coefficient, 0.91). Agreement was moderate to substantial for the conventional Wang method (κ = 0.46-0.62) and moderate for the rapid method (κ = 0.46-0.58). For Nakamura, moderate agreement (κ = 0.41-0.52) was reached, whereas concordance was fair to moderate for Ueno (κ = 0.39-0.56) and Hase (κ = 0.29-0.51). The Hase, Ueno, densest high-power field, and 10 densest high-power field methods identified a significant association of tumor budding with tumor border configuration. In multivariate analysis, only tumor budding as evaluated in densest high-power field and 10 densest high-power fields had significant prognostic effects on patient survival (P < .01), with high prognostic accuracy over the full 10-year follow-up. Scoring tumor buds in 10 densest high-power fields is a promising method to identify stage II patients at high risk for recurrence in daily diagnostics; it is highly reproducible, accounts for heterogeneity, and has a strong predictive value for adverse outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although tumor budding is linked to adverse prognosis in colorectal cancer, it remains largely unreported in daily diagnostic work due to the absence of a standardized scoring method. Our aim was to assess the inter-observer agreement of a novel 10-high-power-fields method for assessment of tumor budding at the invasive front and to confirm the prognostic value of tumor budding in our setting of colorectal cancers. Whole tissue sections of 215 colorectal cancers with full clinico-pathological and follow-up information were stained with cytokeratin AE1/AE3 antibody. Presence of buds was scored across 10-high-power fields at the invasive front by two pathologists and two additional observers were asked to score 50 cases of tumor budding randomly selected from the larger cohort. The measurements were correlated to the patient and tumor characteristics. Inter-observer agreement and correlation between observers' scores were excellent (P<0.0001; intraclass correlation coefficient=0.96). A test subgroup of 65 patients (30%) was used to define a valid cutoff score for high-grade tumor budding and the remaining 70% of the patients were entered into the analysis. High-grade budding was defined as an average of ≥10 buds across 10-high-power fields. High-grade budding was associated with a higher tumor grade (P<0.0001), higher TNM stage (P=0.0003), vascular invasion (P<0.0001), infiltrating tumor border configuration (P<0.0001) and reduced survival (P<0.0001). Multivariate analysis confirmed its independent prognostic effect (P=0.007) when adjusting for TNM stage and adjuvant therapy. Using 10-high-power fields for evaluating tumor budding has independent prognostic value and shows excellent inter-observer agreement. Like the BRE and Gleason scores in breast and prostate cancers, respectively, tumor budding could be a basis for a prognostic score in colorectal cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of group-randomized trials is particularly widespread in the evaluation of health care, educational, and screening strategies. Group-randomized trials represent a subset of a larger class of designs often labeled nested, hierarchical, or multilevel and are characterized by the randomization of intact social units or groups, rather than individuals. The application of random effects models to group-randomized trials requires the specification of fixed and random components of the model. The underlying assumption is usually that these random components are normally distributed. This research is intended to determine if the Type I error rate and power are affected when the assumption of normality for the random component representing the group effect is violated. ^ In this study, simulated data are used to examine the Type I error rate, power, bias and mean squared error of the estimates of the fixed effect and the observed intraclass correlation coefficient (ICC) when the random component representing the group effect possess distributions with non-normal characteristics, such as heavy tails or severe skewness. The simulated data are generated with various characteristics (e.g. number of schools per condition, number of students per school, and several within school ICCs) observed in most small, school-based, group-randomized trials. The analysis is carried out using SAS PROC MIXED, Version 6.12, with random effects specified in a random statement and restricted maximum likelihood (REML) estimation specified. The results from the non-normally distributed data are compared to the results obtained from the analysis of data with similar design characteristics but normally distributed random effects. ^ The results suggest that the violation of the normality assumption for the group component by a skewed or heavy-tailed distribution does not appear to influence the estimation of the fixed effect, Type I error, and power. Negative biases were detected when estimating the sample ICC and dramatically increased in magnitude as the true ICC increased. These biases were not as pronounced when the true ICC was within the range observed in most group-randomized trials (i.e. 0.00 to 0.05). The normally distributed group effect also resulted in bias ICC estimates when the true ICC was greater than 0.05. However, this may be a result of higher correlation within the data. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some of these effects by means of statistical models. To this end, a benchmarking between two different families of varying-coefficient models (regime-switching and conditional parametric models) is carried out. The case of the offshore wind farm of Horns Rev in Denmark has been considered. The analysis is focused on one-step ahead forecasting and a time series resolution of 10 min. It has been found that the local wind direction contributes to model some features of the prevailing winds, such as the impact of the wind direction on the wind variability, whereas the non-linearities related to the power transformation process can be introduced by considering the local wind speed. In both cases, conditional parametric models showed a better performance than the one achieved by the regime-switching strategy. The results attained reinforce the idea that each explanatory variable allows the modelling of different underlying effects in the dynamics of wind power time series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, calculus of variations and combined blade element and momentum theory (BEMT) are used to demonstrate that, in hover, when neither root nor tip losses are considered; the rotor, which minimizes the total power (MPR), generates an induced velocity that varies linearly along the blade span. The angle of attack of every blade element is constant and equal to its optimum value. The traditional ideal twist (ITR) and optimum (OR) rotors are revisited in the context of this variational framework. Two more optimum rotors are obtained considering root and tip losses, the ORL, and the MPRL. A comparison between these five rotors is presented and discussed. The MPR and MPRL present a remarkable saving of power for low values of both thrust coefficient and maximum aerodynamic efficiency. The result obtained can be exploited to improve the aerodynamic behaviour of rotary wing micro air vehicles (MAV). A comparison with experimental results obtained from the literature is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The boundary element method (BEM) has been applied successfully to many engineering problems during the last decades. Compared with domain type methods like the finite element method (FEM) or the finite difference method (FDM) the BEM can handle problems where the medium extends to infinity much easier than domain type methods as there is no need to develop special boundary conditions (quiet or absorbing boundaries) or infinite elements at the boundaries introduced to limit the domain studied. The determination of the dynamic stiffness of arbitrarily shaped footings is just one of these fields where the BEM has been the method of choice, especially in the 1980s. With the continuous development of computer technology and the available hardware equipment the size of the problems under study grew and, as the flop count for solving the resulting linear system of equations grows with the third power of the number of equations, there was a need for the development of iterative methods with better performance. In [1] the GMRES algorithm was presented which is now widely used for implementations of the collocation BEM. While the FEM results in sparsely populated coefficient matrices, the BEM leads, in general, to fully or densely populated ones, depending on the number of subregions, posing a serious memory problem even for todays computers. If the geometry of the problem permits the surface of the domain to be meshed with equally shaped elements a lot of the resulting coefficients will be calculated and stored repeatedly. The present paper shows how these unnecessary operations can be avoided reducing the calculation time as well as the storage requirement. To this end a similar coefficient identification algorithm (SCIA), has been developed and implemented in a program written in Fortran 90. The vertical dynamic stiffness of a single pile in layered soil has been chosen to test the performance of the implementation. The results obtained with the 3-d model may be compared with those obtained with an axisymmetric formulation which are considered to be the reference values as the mesh quality is much better. The entire 3D model comprises more than 35000 dofs being a soil region with 21168 dofs the biggest single region. Note that the memory necessary to store all coefficients of this single region is about 6.8 GB, an amount which is usually not available with personal computers. In the problem under study the interface zone between the two adjacent soil regions as well as the surface of the top layer may be meshed with equally sized elements. In this case the application of the SCIA leads to an important reduction in memory requirements. The maximum memory used during the calculation has been reduced to 1.2 GB. The application of the SCIA thus permits problems to be solved on personal computers which otherwise would require much more powerful hardware.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.