891 resultados para Potential distribution modelling
Resumo:
Species distribution modeling has relevant implications for the studies of biodiversity, decision making about conservation and knowledge about ecological requirements of the species. The aim of this study was to evaluate if the use of forest inventories can improve the estimation of occurrence probability, identify the limits of the potential distribution and habitat preference of a group of timber tree species. The environmental predictor variables were: elevation, slope, aspect, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). To estimate the distribution of species we used the maximum entropy method (Maxent). In comparison with a random distribution, using topographic variables and vegetation index as features, the Maxent method predicted with an average accuracy of 86% the geographical distribution of studied species. The altitude and NDVI were the most important variables. There were limitations to the interpolation of the models for non-sampled locations and that are outside of the elevation gradient associated with the occurrence data in approximately 7% of the basin area. Ceiba pentandra (samaúma), Castilla ulei (caucho) and Hura crepitans (assacu) is more likely to occur in nearby water course areas. Clarisia racemosa (guariúba), Amburana acreana (cerejeira), Aspidosperma macrocarpon (pereiro), Apuleia leiocarpa (cumaru cetim), Aspidosperma parvifolium (amarelão) and Astronium lecointei (aroeira) can also occur in upland forest and well drained soils. This modeling approach has potential for application on other tropical species still less studied, especially those that are under pressure from logging.
Resumo:
The male of Latonigena auricomis Simon, 1893 is described for the first time and the female is redescribed. New records are provided for Argentina, Brazil and Uruguay. Notes on the natural history and a potential distribution model of the species are presented in the Neotropical Region.
Resumo:
The lesser grison (Galictis cuja) is one of the least-known mustelids in the Neotropics, despite its broad range across South America. This study aimed to explore current knowledge of the distribution of the species to identify gaps in knowledge and anticipate its full geographic distribution. Eighty-nine articles have mentioned G. cuja since 1969, but only 13 focused on the species. We generated a detailed model of the species' potential distribution that validated previous maps, but with improved detail, supporting previous southernmost records, and providing a means of identifying priority sites for conservation and management of the species.
Resumo:
Predictive species distribution modelling (SDM) has become an essential tool in biodiversity conservation and management. The choice of grain size (resolution) of environmental layers used in modelling is one important factor that may affect predictions. We applied 10 distinct modelling techniques to presence-only data for 50 species in five different regions, to test whether: (1) a 10-fold coarsening of resolution affects predictive performance of SDMs, and (2) any observed effects are dependent on the type of region, modelling technique, or species considered. Results show that a 10 times change in grain size does not severely affect predictions from species distribution models. The overall trend is towards degradation of model performance, but improvement can also be observed. Changing grain size does not equally affect models across regions, techniques, and species types. The strongest effect is on regions and species types, with tree species in the data sets (regions) with highest locational accuracy being most affected. Changing grain size had little influence on the ranking of techniques: boosted regression trees remain best at both resolutions. The number of occurrences used for model training had an important effect, with larger sample sizes resulting in better models, which tended to be more sensitive to grain. Effect of grain change was only noticeable for models reaching sufficient performance and/or with initial data that have an intrinsic error smaller than the coarser grain size.
Resumo:
Climate change has created the need for new strategies in conservation planning that account for the dynamics of factors threatening endangered species. Here we assessed climate change threat to the European otter, a flagship species for freshwater ecosystems, considering how current conservation areas will perform in preserving the species in a climatically changed future. We used an ensemble forecasting approach considering six modelling techniques applied to eleven subsets of otter occurrences across Europe. We performed a pseudo-independent and an internal evaluation of predictions. Future projections of species distribution were made considering the A2 and B2 scenarios for 2080 across three climate models: CCCMA-CGCM2, CSIRO-MK2 and HCCPR HAD-CM3. The current and the predicted otter distributions were used to identify priority areas for the conservation of the species, and overlapped to existing network of protected areas. Our projections show that climate change may profoundly reshuffle the otter's potential distribution in Europe, with important differences between the two scenarios we considered. Overall, the priority areas for conservation of the otter in Europe appear to be unevenly covered by the existing network of protected areas, with the current conservation efforts being insufficient in most cases. For a better conservation, the existing protected areas should be integrated within a more general conservation and management strategy incorporating climate change projections. Due to the important role that the otter plays for freshwater habitats, our study further highlights the potential sensitivity of freshwater habitats in Europe to climate change.
Resumo:
Rare species have restricted geographic ranges, habitat specialization, and/or small population sizes. Datasets on rare species distribution usually have few observations, limited spatial accuracy and lack of valid absences; conversely they provide comprehensive views of species distributions allowing to realistically capture most of their realized environmental niche. Rare species are the most in need of predictive distribution modelling but also the most difficult to model. We refer to this contrast as the "rare species modelling paradox" and propose as a solution developing modelling approaches that deal with a sufficiently large set of predictors, ensuring that statistical models aren't overfitted. Our novel approach fulfils this condition by fitting a large number of bivariate models and averaging them with a weighted ensemble approach. We further propose that this ensemble forecasting is conducted within a hierarchic multi-scale framework. We present two ensemble models for a test species, one at regional and one at local scale, each based on the combination of 630 models. In both cases, we obtained excellent spatial projections, unusual when modelling rare species. Model results highlight, from a statistically sound approach, the effects of multiple drivers in a same modelling framework and at two distinct scales. From this added information, regional models can support accurate forecasts of range dynamics under climate change scenarios, whereas local models allow the assessment of isolated or synergistic impacts of changes in multiple predictors. This novel framework provides a baseline for adaptive conservation, management and monitoring of rare species at distinct spatial and temporal scales.
Resumo:
We present models predicting the potential distribution of a threatened ant species, Formica exsecta Nyl., in the Swiss National Park ( SNP). Data to fit the models have been collected according to a random-stratified design with an equal number of replicates per stratum. The basic aim of such a sampling strategy is to allow the formal testing of biological hypotheses about those factors most likely to account for the distribution of the modeled species. The stratifying factors used in this study were: vegetation, slope angle and slope aspect, the latter two being used as surrogates of solar radiation, considered one of the basic requirements of F. exsecta. Results show that, although the basic stratifying predictors account for more than 50% of the deviance, the incorporation of additional non-spatially explicit predictors into the model, as measured in the field, allows for an increased model performance (up to nearly 75%). However, this was not corroborated by permutation tests. Implementation on a national scale was made for one model only, due to the difficulty of obtaining similar predictors on this scale. The resulting map on the national scale suggests that the species might once have had a broader distribution in Switzerland. Reasons for its particular abundance within the SNP might possibly be related to habitat fragmentation and vegetation transformation outside the SNP boundaries.
Resumo:
Two different approaches currently prevail for predicting spatial patterns of species assemblages. The first approach (macroecological modelling, MEM) focuses directly on realised properties of species assemblages, whereas the second approach (stacked species distribution modelling, S-SDM) starts with constituent species to approximate assemblage properties. Here, we propose to unify the two approaches in a single 'spatially-explicit species assemblage modelling' (SESAM) framework. This framework uses relevant species source pool designations, macroecological factors, and ecological assembly rules to constrain predictions of the richness and composition of species assemblages obtained by stacking predictions of individual species distributions. We believe that such a framework could prove useful in many theoretical and applied disciplines of ecology and evolution, both for improving our basic understanding of species assembly across spatio-temporal scales and for anticipating expected consequences of local, regional or global environmental changes. In this paper, we propose such a framework and call for further developments and testing across a broad range of community types in a variety of environments.
Resumo:
Aim The imperfect detection of species may lead to erroneous conclusions about species-environment relationships. Accuracy in species detection usually requires temporal replication at sampling sites, a time-consuming and costly monitoring scheme. Here, we applied a lower-cost alternative based on a double-sampling approach to incorporate the reliability of species detection into regression-based species distribution modelling.Location Doñana National Park (south-western Spain).Methods Using species-specific monthly detection probabilities, we estimated the detection reliability as the probability of having detected the species given the species-specific survey time. Such reliability estimates were used to account explicitly for data uncertainty by weighting each absence. We illustrated how this novel framework can be used to evaluate four competing hypotheses as to what constitutes primary environmental control of amphibian distribution: breeding habitat, aestivating habitat, spatial distribution of surrounding habitats and/or major ecosystems zonation. The study was conducted on six pond-breeding amphibian species during a 4-year period.Results Non-detections should not be considered equivalent to real absences, as their reliability varied considerably. The occurrence of Hyla meridionalis and Triturus pygmaeus was related to a particular major ecosystem of the study area, where suitable habitat for these species seemed to be widely available. Characteristics of the breeding habitat (area and hydroperiod) were of high importance for the occurrence of Pelobates cultripes and Pleurodeles waltl. Terrestrial characteristics were the most important predictors of the occurrence of Discoglossus galganoi and Lissotriton boscai, along with spatial distribution of breeding habitats for the last species.Main conclusions We did not find a single best supported hypothesis valid for all species, which stresses the importance of multiscale and multifactor approaches. More importantly, this study shows that estimating the reliability of non-detection records, an exercise that had been previously seen as a naïve goal in species distribution modelling, is feasible and could be promoted in future studies, at least in comparable systems.
Resumo:
Prediction of species' distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence-only data to fit models, and independent presence-absence data to evaluate the predictions. Along with well-established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species' distributions. These include machine-learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species' occurrence data. Presence-only data were effective for modelling species' distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve.
Resumo:
1. Identifying the boundary of a species' niche from observational and environmental data is a common problem in ecology and conservation biology and a variety of techniques have been developed or applied to model niches and predict distributions. Here, we examine the performance of some pattern-recognition methods as ecological niche models (ENMs). Particularly, one-class pattern recognition is a flexible and seldom used methodology for modelling ecological niches and distributions from presence-only data. The development of one-class methods that perform comparably to two-class methods (for presence/absence data) would remove modelling decisions about sampling pseudo-absences or background data points when absence points are unavailable. 2. We studied nine methods for one-class classification and seven methods for two-class classification (five common to both), all primarily used in pattern recognition and therefore not common in species distribution and ecological niche modelling, across a set of 106 mountain plant species for which presence-absence data was available. We assessed accuracy using standard metrics and compared trade-offs in omission and commission errors between classification groups as well as effects of prevalence and spatial autocorrelation on accuracy. 3. One-class models fit to presence-only data were comparable to two-class models fit to presence-absence data when performance was evaluated with a measure weighting omission and commission errors equally. One-class models were superior for reducing omission errors (i.e. yielding higher sensitivity), and two-classes models were superior for reducing commission errors (i.e. yielding higher specificity). For these methods, spatial autocorrelation was only influential when prevalence was low. 4. These results differ from previous efforts to evaluate alternative modelling approaches to build ENM and are particularly noteworthy because data are from exhaustively sampled populations minimizing false absence records. Accurate, transferable models of species' ecological niches and distributions are needed to advance ecological research and are crucial for effective environmental planning and conservation; the pattern-recognition approaches studied here show good potential for future modelling studies. This study also provides an introduction to promising methods for ecological modelling inherited from the pattern-recognition discipline.
Resumo:
Risk maps summarizing landscape suitability of novel areas for invading species can be valuable tools for preventing species' invasions or controlling their spread, but methods employed for development of such maps remain variable and unstandardized. We discuss several considerations in development of such models, including types of distributional information that should be used, the nature of explanatory variables that should be incorporated, and caveats regarding model testing and evaluation. We highlight that, in the case of invasive species, such distributional predictions should aim to derive the best hypothesis of the potential distribution of the species by using (1) all distributional information available, including information from both the native range and other invaded regions; (2) predictors linked as directly as is feasible to the physiological requirements of the species; and (3) modelling procedures that carefully avoid overfitting to the training data. Finally, model testing and evaluation should focus on well-predicted presences, and less on efficient prediction of absences; a k-fold regional cross-validation test is discussed.
Resumo:
Background Dugesia sicula is the only species of its genus not presenting an endemic or restricted distribution within the Mediterranean area. It mostly comprises fissiparous populations (asexual reproduction by body division and regeneration), most likely sexually sterile, and characterized by an extremely low genetic diversity interpreted as the consequence of a recent anthropic expansion. However, its fissiparous reproduction can result in an apparent lack of diversity within the species, since genetic variation within individuals can be as large as between them because most individuals within a population are clones. We have estimated haplotype and nucleotide diversity of cytochrome oxidase I within and among individuals along the species distribution of a broad sample of D. sicula, including asexual and the two only sexual populations known today; and predicted its potential distribution based on climatic variables. Our aim was to determine the centre of colonisation origin, whether the populations are recent, and whether the species is expanding. Results The species presents 3 most frequent haplotypes, differing in a maximum of 11 base pairs. As expected from their fissiparous mode of reproduction, in half of all the analysed localities many individuals have multiple heteroplasmic haplotypes. The distribution of haplotypes is not geographically structured; however, the distribution of haplotypes and heteroplasmic populations shows higher diversity in the central Mediterranean region. The potential distribution predicted by climatic variables based modelling shows a preference for coastal areas and fits well with the observed data. Conclusions The distribution and frequency of the most frequent haplotypes and the presence of heteroplasmic individuals allow us to gain an understanding of the recent history of the species, together with previous knowledge on its phylogenetic relationships and age: The species most probably originated in Africa and dispersed through the central Mediterranean. After one or multiple populations became triploid and fissiparous, the species colonized the Mediterranean basin, likely both by its own means and helped by human activities. Its present distribution practically fulfils its potential distribution as modelled with climatic variables. Its prevalence in coastal regions with higher water temperatures predicts a likely future expansion to northern and more interior areas following the increase in temperatures due to climate change.
Resumo:
The Mediterranean basin is considered a hotspot of biological diversity with a long history of modification of natural ecosystems by human activities, and is one of the regions that will face extensive changes in climate. For 181 terrestrial mammals (68% of all Mediterranean mammals), we used an ensemble forecasting approach to model the future (approx. 2100) potential distribution under climate change considering five climate change model outputs for two climate scenarios. Overall, a substantial number of Mediterranean mammals will be severely threatened by future climate change, particularly endemic species. Moreover, we found important changes in potential species richness owing to climate change, with some areas (e.g. montane region in central Italy) gaining species, while most of the region will be losing species (mainly Spain and North Africa). Existing protected areas (PAs) will probably be strongly influenced by climate change, with most PAs in Africa, the Middle East and Spain losing a substantial number of species, and those PAs gaining species (e.g. central Italy and southern France) will experience a substantial shift in species composition.
Resumo:
1. Species distribution models (SDMs) have become a standard tool in ecology and applied conservation biology. Modelling rare and threatened species is particularly important for conservation purposes. However, modelling rare species is difficult because the combination of few occurrences and many predictor variables easily leads to model overfitting. A new strategy using ensembles of small models was recently developed in an attempt to overcome this limitation of rare species modelling and has been tested successfully for only a single species so far. Here, we aim to test the approach more comprehensively on a large number of species including a transferability assessment. 2. For each species numerous small (here bivariate) models were calibrated, evaluated and averaged to an ensemble weighted by AUC scores. These 'ensembles of small models' (ESMs) were compared to standard Species Distribution Models (SDMs) using three commonly used modelling techniques (GLM, GBM, Maxent) and their ensemble prediction. We tested 107 rare and under-sampled plant species of conservation concern in Switzerland. 3. We show that ESMs performed significantly better than standard SDMs. The rarer the species, the more pronounced the effects were. ESMs were also superior to standard SDMs and their ensemble when they were independently evaluated using a transferability assessment. 4. By averaging simple small models to an ensemble, ESMs avoid overfitting without losing explanatory power through reducing the number of predictor variables. They further improve the reliability of species distribution models, especially for rare species, and thus help to overcome limitations of modelling rare species.