975 resultados para Posttranslational Modifications


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An LC/MS analysis with diagnostic screening for the detection of peptides with posttranslational modifications revealed the presence of novel sulfated peptides within the -conotoxin molecular mass range in Conus anemone crude venom. A functional assay of the extract showed activity at several neuronal nicotinic acetylcholine receptors (nAChRs). Three sulfated alpha-conotoxins (AnIA, AnIB, and AnIC) were identified by LC/MS and assay-directed fractionation and sequenced after purification. The most active of these, alpha-AnIB, was further characterized and used to investigate the influence of posttranslational modifications on affinity. Synthetic AnIB exhibited subnanomolar potency at the rat alpha3/beta2 nAChR (IC50 0.3 nM) and was 200-fold less active on the rat alpha7 nAChR (IC50 76 nM). The unsulfated peptide [Tyr(16)]AnIB showed a 2-fold and 10-fold decrease in activities at alpha3beta2 (IC50 0.6 nM) and alpha7(IC50 836 nM) nAChR, respectively. Likewise, removal of the C-terminal amide had a greater influence on potency at the alpha7 (IC50 367 nM) than at the alpha3beta2 nAChR (IC50 0.5 nM). Stepwise removal of two N-terminal glycine residues revealed that these residues affect the binding kinetics of the peptide. Comparison with similar 4/7-alpha-conotoxin sequences suggests that residue 11 (alanine or glycine) and residue 14 (glutamine) constitute important determinants for alpha3beta2 selectivity, whereas the C-terminal amidation and sulfation at tyrosine-16 favor alpha7 affinity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sex determination represents a critical bifurcation in the road of embryonic development. It is based on a finely regulated network of gene activity, as well as protein-protein interactions and activation or silencing of signaling pathways. Despite the identification of a number of critical genes, many aspects of the molecular cascade that drives the differentiation of the embryonic gonad into either a testis or an ovary remain poorly understood. To identify new proteins involved in this cascade, we employed two-dimensional gel electrophoresis and mass spectrometry to compare the protein expression profiles of fetal mouse testes and ovaries. Three proteins, hnRPA1, TRA1, and HSC71, were found to be expressed in a male-specific manner and this expression was confirmed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) and in situ hybridization. Moreover, HSC71 was found to be hyperphosphorylated in male compared to female gonads, emphasizing the advantage of the proteomic approach in allowing the detection of posttranslational modifications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We recently reported that methionine-loaded human umbilical vein endothelial cells (HUVECs) exported homocysteine (Hcy) and were associated with hydroxyl radical generation and oxidation of lipids in LDL. Herein we have analysed the Hcy-induced posttranslational modifications (PTMs) of LDL protein. PTMs have been characterised using electrophoretic mobility shift, protein carbonyl ELISA, HPLC with electrochemical detection and Western blotting of 3-nitrotyrosine, and LDL uptake by scavenger receptors on monocyte/macrophages. We have also analysed PTMs in LDL isolated from rheumatoid (RA) and osteo-(OA) arthritis patients with cardiovascular disease (CVD). While reagent Hcy (<50 μM) promoted copper-catalysed LDL protein oxidation, Hcy released from methionine-loaded HUVECs promoted LDL protein nitration. In addition, LDL nitration was associated with enhanced monocyte/macrophage uptake when compared with LDL oxidation. LDL protein nitration and uptake by monocytes, but not carbonyl formation, was elevated in both RA and OA patients with CVD compared with disease-matched patients that had no evidence of CVD. Moreover, a direct correlation between plasma total Hcy (tHcy) and LDL uptake was observed. The present studies suggest that elevated plasma tHcy may promote LDL nitration and increased scavenger receptor uptake, providing a molecular mechanism that may contribute to the clinical link between CVD and elevated plasma tHcy. © 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proteomics, the analysis of expressed proteins, has been an important developing area of research for the past two decades [Anderson, NG, Anderson, NL. Twenty years of two-dimensional electrophoresis: past, present and future. Electrophoresis 1996;17:443-53]. Advances in technology have led to a rapid increase in applications to a wide range of samples; from initial experiments using cell lines, more complex tissues and biological fluids are now being assessed to establish changes in protein expression. A primary aim of clinical proteomics is the identification of biomarkers for diagnosis and therapeutic intervention of disease, by comparing the proteomic profiles of control and disease, and differing physiological states. This expansion into clinical samples has not been without difficulties owing to the complexity and dynamic range in plasma and human tissues including tissue biopsies. The most widely used techniques for analysis of clinical samples are surface-enhanced laser desorption/ionisation mass spectrometry (SELDI-MS) and 2-dimensional gel electrophoresis (2-DE) coupled to matrix-assisted laser desorption ionisation [Person, MD, Monks, TJ, Lau, SS. An integrated approach to identifying chemically induced posttranslational modifications using comparative MALDI-MS and targeted HPLC-ESI-MS/MS. Chem. Res. Toxicol. 2003;16:598-608]-mass spectroscopy (MALDI-MS). This review aims to summarise the findings of studies that have used proteomic research methods to analyse samples from clinical studies and to assess the impact that proteomic techniques have had in assessing clinical samples. © 2004 The Canadian Society of Clinical Chemists. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a growing awareness that inflammatory diseases have an oxidative pathology, which can result in specific oxidation of amino acids within proteins. Antibody-based techniques for detecting oxidative posttranslational modifications (oxPTMs) are often used to identify the level of protein oxidation. There are many commercially available antibodies but some uncertainty to the potential level of cross reactivity they exhibit; moreover little information regarding the specific target epitopes is available. The aim of this work was to investigate the potential of antibodies to distinguish between select peptides with and without oxPTMs. Two peptides, one containing chlorotyrosine (DY-Cl-EDQQKQLC) and the other an unmodified tyrosine (DYEDQQKQLC) were synthesized and complementary anti-sera were produced in sheep using standard procedures. The anti-sera were tested using a half-sandwich ELISA and the anti-serum raised against the chloro-tyrosine containing peptide showed increased binding to the chlorinated peptide, whereas the control anti-serum bound similarly to both peptides. This suggested that antibodies can discriminate between similar peptide sequences with and without an oxidative modification. A peptide (STSYGTGC) and its variants with chlorotyrosine or nitrotyrosine were produced. The anti-sera showed substantially less binding to these alternative peptides than to the original peptides the anti-sera were produced against. Work is ongoing to test commercially available antibodies against the synthetic peptides as a comparison to the anti-sera produced in sheep. In conclusion, the antisera were able to distinguish between oxidatively modified and unmodified peptides, and two different sequences around the modification site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The presenilins are the catalytic component of the gamma-secretase protease complex, involved in the regulated intramembrane proteolysis of numerous type-1 transmembrane proteins, including Amyloid precursor protein (APP) and Notch. In addition to their role in the γ-secretase complex the presenilins are involved in a number of γ-secretase independent functions such as calcium homeostasis, apoptosis, inflammation and protein trafficking. Presenilin function is known to be regulated through posttranslational modifications like endoproteolysis, phosphorylation and ubiquitination. Using a bioinformatics and protein sequence analysis approach this lab has identified a putative ubiquitin binding CUE domain in the presenilins. The aim of this project was to characterise the function of the presenilin CUE domains. Firstly, the presenilins are shown to contain a functional ubiquitin-binding CUE domain that preferentially binds to K63-linked polyubiquitin chains. The PS1 CUE domain is shown to be dispensable for PS1 endoproteolysis and γ-secretase mediated cleavage of APP, Notch and IL-1R1. This suggests the PS1 CUE domain is involved in a γ-secretase independent PS1 function. Our hypothesis is that the PS1 CUE domain is involved in regulating PS1’s intermolecular protein-protein interactions or intramolecular PS1:PS1 interactions. Here the PS1 CUE domain is shown to be dispensable for the interaction of PS1 and the K63-linked polyubiquitinated PS1 interacting proteins P75NTR, IL-1R1, TRAF6, TRAF2 and RIP1. To further investigate PS1 CUE domain function a mass spectrometry proteomics based approach is used to identify PS1 CUE domain interacting proteins. This proteomics approach demonstrated that the PS1 CUE domain is not required for PS1 dimerization. Instead a number of proteins thatinteract with the PS1 CUE domain are identified as well as proteins whose interaction with PS1 is downregulated by the presence of the PS1 CUE domain. Bioinformatic analysis of these proteins suggests possible roles for the PS1 CUE domain in regulating cell signalling, ubiquitination or cellular trafficking.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aberrant regulation of the Wnt signalling pathway is a recurrent theme in cancer biology. Hyper activation due to oncogenic mutations and paracrine activity has been found in both colon cancer and breast cancer, and continues to evolve as a central mechanism in oncogenesis. PDLIM2, a cytoskeletal PDZ protein, is an IGF-1 regulated gene that is highly expressed in cancer cell lines derived from metastatic tumours. Suppression of PDLIM2 inhibits polarized cell migration, reverses the Epithelial to Mesenchymal transition (EMT) phenotype, suppresses the transcription of β-catenin target genes, and regulates gene expression of key transcription factors in EMT. This thesis investigates the mechanism by which PDLIM2 contributes to the maintenance of Wnt signalling in cancer cells. Here we show that PDLIM2 is a critical regulator of the Wnt pathway by regulating β-catenin at the adherens juctions, as also its transcriptional activity by the interaction of PDLIM2 with TCF4 at the nucleus. Evaluation of PDLIM2 in macrophages and co-culture studies with cancer cells and fibroblasts showed the influence exerted on PDLIM2 by paracrine cues. Thus, PDLIM2 integrates cytoskeleton signalling with gene expression by modulating the Wnt signalling pathway and reconciling microenvironmental cues with signals in epithelial cells. Negative correlation of mRNA and protein levels in the triple negative breast cancer cell BT549 suggests that PDLIM2 is part of a more complex mechanism that involves transcription and posttranslational modifications. GST pulldown studies and subsequent mass spectrometry analysis showed that PDLIM2 interacts with 300 proteins, with a high biological function in protein biosynthesis and Ubiquitin/proteasome pathways, including 13 E3 ligases. Overall, these data suggest that PDLIM2 has two distinct functions depending of its location. Located at the cytoplasm mediates cytoskeletal re-arrangements, whereas at the nucleus PDLIM2 acts as a signal transduction adaptor protein mediating transcription and ubiquitination of key transcription factors in cancer development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The last decades of the 20th century defined the genetic engineering advent, climaxing in the development of techniques, such as PCR and Sanger sequencing. This, permitted the appearance of new techniques to sequencing whole genomes, identified as next-generation sequencing. One of the many applications of these techniques is the in silico search for new secondary metabolites, synthesized by microorganisms exhibiting antimicrobial properties. The peptide antibiotics compounds can be classified in two classes, according to their biosynthesis, in ribosomal or nonribosomal peptides. Lanthipeptides are the most studied ribosomal peptides and are characterized by the presence of lanthionine and methylanthionine that result from posttranslational modifications. Lanthipeptides are divided in four classes, depending on their biosynthetic machinery. In class I, a LanB enzyme dehydrate serine and threonine residues in the C-terminus precursor peptide. Then, these residues undergo a cyclization step performed by a LanC enzyme, forming the lanthionine rings. The cleavage and the transport of the peptide is achieved by the LanP and LanT enzymes, respectively. Although, in class II only one enzyme, LanM, is responsible for the dehydration and cyclization steps and also only one enzyme performs the cleavage and transport, LanT. Pedobacter sp. NL19 is a Gram-negative bacterium, isolated from sludge of an abandon uranium mine, in Viseu (Portugal). Antibacterial activity in vitro was detected against several Gram-positive and Gram-negative bacteria. Sequencing and in silico analysis of NL19 genome revealed the presence of 21 biosynthetic clusters for secondary metabolites, including nonribosomal and ribosomal peptides biosynthetic clusters. Four lanthipeptides clusters were predicted, comprising the precursor peptides, the modifying enzymes (LanB and LanC), and also a bifunctional LanT. This result revealed the hybrid nature of the clusters, comprising characteristics from two distinct classes, which are poorly described in literature. The phylogenetic analysis of their enzymes showed that they clustered within the bacteroidetes clade. Furthermore, hybrid gene clusters were also found in other species of this phylum, revealing that it is a common characteristic in this group. Finally, the analysis of NL19 colonies by MALDI-TOF MS allowed the identification of a 3180 Da mass that corresponds to the predicted mass of a lanthipeptide encoded in one of the clusters. However, this result is not fully conclusive and further experiments are needed to understand the full potential of the compounds encoded in this type of clusters. In conclusion, it was determined that NL19 strain has the potential to produce diverse secondary metabolites, including lanthipeptides that were not functionally characterized so far.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Pós-Graduação em Biologia Molecular, 2015.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Although excessive ethanol consumption is known to lead to a variety of adverse effects in the heart, the molecular mechanisms of such effects have remained poorly defined. We hypothesized that posttranslational covalent binding of reactive molecular species to proteins occurs in the heart in response to acute ethanol exposure. Methods: The generation of protein adducts with several aldehydic species was examined by using monospecific antibodies against adducts with malondialdehyde (MDA), acetaldehyde (AA), MDA-AA hybrids, and hydroxyethyl radicals. Specimens of heart tissue were obtained from rats after intraperitoneal injections with alcohol (75 mmol/kg body weight) with or without pretreatment with cyanamide (0.05 mmol/kg body weight), an aldehyde dehydrogenase inhibitor. Results: The amounts of MDA and unreduced AA adducts were found to be significantly increased in the heart of the rats treated with ethanol, cyanamide, or both, whereas no other adducts were detected in statistically significant quantities. Immunohistochemical studies for characterization of adduct distribution revealed sarcolemmal adducts of both MDA and AA in the rats treated with ethanol and cyanamide in addition to intracellular adducts, which were also present in the group treated with ethanol alone. Conclusions: These findings support the role of enhanced lipid peroxidation and the generation of protein-aldehyde condensates in vivo as a result of excessive ethanol intake. These findings may have implications in the molecular mechanisms of cardiac dysfunction in alcoholics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurofilaments (NF), the main components of axonal cytoskeleton, are known to be involved in several neurodegenerative diseases. It has been reported that methylmalonate and propionate affect phosphorylation of NFs. In an in vitro model for methylmalonic aciduria our group has recently shown that 2- methylcitrate (2-MCA) is the most toxic metabolite for developing brain cells. Here, we studied the effects of repetitive administration of 1mM 2- MCA every 12 hours over 3 days on the development of NFs in 3D organotypic rat brain cell cultures. By immunohistochemistry with antibodies specific for the different NF subunits (light NFL, medium NFM, heavy NFH) as well as for phosphorylated (p) and glycosylated (g) forms of NFs, we observed a decrease of axonal labeling and a disorganized axonal pattern. Interestingly, signal retention of p-NFM and g-NFM was observed in neuronal soma. Western blotting showed the decrease of NFL and NFH subunits. Taken together, our data show that 2-MCA alters expression of the different NF subunits as well as their post-translational modifications. This likely results in disturbed NF assembly, abnormal accumulation of NF in neuronal cell bodies and impairment of axonal development.We conclude thatNF are involved in 2-MCA-induced neurodegeneration in methylmalonic aciduria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of mass spectrometry techniques to detect protein oxidation, which contributes to signalling and inflammation, is important. Label-free approaches have the advantage of reduced sample manipulation, but are challenging in complex samples owing to undirected analysis of large data sets using statistical search engines. To identify oxidised proteins in biological samples, we previously developed a targeted approach involving precursor ion scanning for diagnostic MS3 ions from oxidised residues. Here, we tested this approach for other oxidations, and compared it with an alternative approach involving the use of extracted ion chromatograms (XICs) generated from high-resolution MSMS data using very narrow mass windows. This accurate mass XIC data methodology was effective at identifying nitrotyrosine, chlorotyrosine, and oxidative deamination of lysine, and for tyrosine oxidations highlighted more modified peptide species than precursor ion scanning or statistical database searches. Although some false positive peaks still occurred in the XICs, these could be identified by comparative assessment of the peak intensities. The method has the advantage that a number of different modifications can be analysed simultaneously in a single LC-MSMS run. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. Biological significance: The use of accurate mass extracted product ion chromatograms to detect oxidised peptides could improve the identification of oxidatively damaged proteins in inflammatory conditions. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein lipoxidation refers to the modification by electrophilic lipid oxidation products to form covalent adducts, which for many years has been considered as a deleterious consequence of oxidative stress. Oxidized lipids or phospholipids containing carbonyl moieties react readily with lysine to form Schiff bases; alternatively, oxidation products containing α,β-unsaturated moieties are susceptible to nucleophilic attack by cysteine, histidine or lysine residues to yield Michael adducts, overall corresponding to a large number of possible protein adducts. The most common detection methods for lipoxidized proteins take advantage of the presence of reactive carbonyl groups to add labels, or use antibodies. These methods have limitations in terms of specificity and identification of the modification site. The latter question is satisfactorily addressed by mass spectrometry, which enables the characterization of the adduct structure. This has allowed the identification of lipoxidized proteins in physiological and pathological situations. While in many cases lipoxidation interferes with protein function, causing inhibition of enzymatic activity and increased immunogenicity, there are a small number of cases where lipoxidation results in gain of function or activity. For certain proteins lipoxidation may represent a form of redox signaling, although more work is required to confirm the physiological relevance and mechanisms of such processes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intermittent fasting (IF) is an often-used intervention to decrease body mass. In male Sprague-Dawley rats, 24 hour cycles of IF result in light caloric restriction, reduced body mass gain, and significant decreases in the efficiency of energy conversion. Here, we study the metabolic effects of IF in order to uncover mechanisms involved in this lower energy conversion efficiency. After 3 weeks, IF animals displayed overeating during fed periods and lower body mass, accompanied by alterations in energy-related tissue mass. The lower efficiency of energy use was not due to uncoupling of muscle mitochondria. Enhanced lipid oxidation was observed during fasting days, whereas fed days were accompanied by higher metabolic rates. Furthermore, an increased expression of orexigenic neurotransmitters AGRP and NPY in the hypothalamus of IF animals was found, even on feeding days, which could explain the overeating pattern. Together, these effects provide a mechanistic explanation for the lower efficiency of energy conversion observed. Overall, we find that IF promotes changes in hypothalamic function that explain differences in body mass and caloric intake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first measurement of charmed-hadron (D(0)) production via the hadronic decay channel (D(0) → K(-) + π(+)) in Au+Au collisions at sqrt[s(NN)] = 200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, N(bin), from p+p to central Au+Au collisions. The D(0) meson yields in central Au + Au collisions are strongly suppressed compared to those in p+p scaled by N(bin), for transverse momenta p(T) > 3 GeV/c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate p(T) is also observed. Model calculations including strong charm-medium interactions and coalescence hadronization describe our measurements.