917 resultados para Pore structure characterization, Silica Monoliths, Mesopores, Macropores


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resorcinol-Formaldehyde xerogels are organic polymers that can be easily tailored to have specific properties. These materials are composed of carbon, hydrogen and oxygen, and have a surface that is very rich in oxygen functionalities, and is therefore very hydrophilic. Their most interesting feature is that they may have the same chemical composition but a different porous texture. Consequently, the influence of porous characteristics, such as pore volume, surface area or pore size can be easily assessed. In this work, a commonly used desiccant, silica gel, is compared with organic xerogels to determine their rate and capacity of water adsorption, and to evaluate the role of surface chemistry versus porous texture. It was found that organic xerogels showed a higher rate of moisture adsorption than silica gel. Pore structure also seems to play an important role in water adsorption capacity. The OX-10 sample, whose porosity was mainly composed of micro-mesoporosity displayed a water adsorption capacity two times greater than that of the silica gel, and three times higher than that of the totally macroporous xerogel OX-2100. The presence of feeder pores (mesopores) that facilitate the access to the hydrophilic surface was observed to be the key factor for a good desiccant behaviour. Neither the total pore volume nor the high surface area (i.e. high microporosity) of the desiccant sample, is as important as the mesopore structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous Ni(OH)(2) was synthesized using cationic surfactant as template and urea as hydrolysis-controlling agent. Mesoporous NiO with centralized pore size distribution was obtained by calcining Ni(OH)(2) at different temperatures. The BET specific surface area reaches 477.7 m(2).g(-1) for NiO calcined at 523 K. Structure characterizations indicate the polycrystalline pore wall of mesoporous nickel oxide. The pore-formation mechanism is also deduced to be quasi-reverse micelle mechanism. Cyclic voltammetry shows the good capacitive behavior of these NiO samples due to its unique mesoporous structure when using large amount of NiO to fabricate electrode. Compared with NiO prepared by dip-coating and cathodic precipitation methods, this mesoporous NiO with controlled pore structure can be used in much larger amount to fabricate the electrode and still maintains high specific capacitance and good capacitive behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equilibrium adsorption and desorption in mesoporous adsorbents is considered on the basis of rigorous thermodynamic analysis, in which the curvature-dependent solid-fluid potential and the compressibility of the adsorbed phase are accounted for. The compressibility of the adsorbed phase is considered for the first time in the literature in the framework of a rigorous thermodynamic approach. Our model is a further development of continuum thermodynamic approaches proposed by Derjaguin and Broekhoff and de Boer, and it is based on a reference isotherm of a non-porous material having the same chemical structure as that of the pore wall. In this improved thermodynamic model, we incorporated a prescription for transforming the solid-fluid potential exerted by the flat reference surface to the potential inside cylindrical and spherical pores. We relax the assumption that the adsorbed film density is constant and equal to that of the saturated liquid. Instead, the density of the adsorbed fluid is allowed to vary over the adsorbed film thickness and is calculated by an equation of state. As a result, the model is capable to describe the adsorption-desorption reversibility in cylindrical pores having diameter less than 2 nm. The generalized thermodynamic model may be applied to the pore size characterization of mesoporous materials instead of much more time-consuming molecular approaches. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The turbostratic mesoporous carbon blacks were prepared by catalytic chemical vapour decomposition (CCVD) of acetylene using Ni/MgO catalysts prepared by co-precipitation. The relationship between deposition conditions and the nanostructures of resultant carbon black materials was investigated. It was found that the turbostratic and textural structures of carbon blacks are dependent on the deposition temperature and nickel catalyst loading. Higher deposition temperature increases the carbon crystallite unit volume V-nano and reduces the surface area of carbon samples. Moreover, a smaller V-nano is produced by a higher Ni loading at the same deposition temperature. In addition of the pore structure and the active metal surface area of the catalyst, the graphitic degree or electronic conductivity of the carbon support is also a key issue to the activity of the supported catalyst. V-nano is a very useful parameter to describe the effect of the crystalline structure of carbon blacks on the reactivity of carbon blacks in oxygen-carbon reaction and the catalytic activity of carbon-supported catalyst in ammonia decomposition semi-quantitatively. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High performance composite membranes based on molecular sieving silica (MSS) were synthesized using sols containing silicon co-polymers (methyltriethoxysilane and tetraethylorthosilicate). Alpha alumina supports were treated with hydrochloric acid prior to sol deposition. Permselectivity of CO2 over CH4 as high as 16.68 was achieved whilst permeability of CO2 up to 36.7 GPU (10(-6) cm(3) (STP) cm(-2) . s(-1) . cm Hg-1) was measured. The best membrane's permeability was finger printed during various stages of the synthesis process showing an increase in CO2/CH4 permselectivity by over 25 times from initial support condition (no membrane film) to the completion of pore structure tailoring. Transport measurement results indicate that the membrane pretreated with HCl has highest permselectivity and permeation rate. In particular, there is a definite cut-off pore size between 3.3 and 3.4 angstroms which is just below the kinetic diameters of Ar and CH4. This demonstrates that the mechanism for the separation in the prepared composite membrane is molecular sieving (activated diffusion), rather than Knudsen diffusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of acidic treatments on N2O reduction over Ni catalysts supported on activated carbon was systematically studied. The catalysts were characterized by N-2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). It is found that surface chemistry plays an important role in N2O-carbon reaction catalyzed by Ni catalyst. HNO3 treatment produces more active acidic surface groups such as carboxyl and lactone, resulting in a more uniform catalyst dispersion and higher catalytic activity. However, HCl treatment decreases active acidic groups and increases the inactive groups, playing an opposite role in the catalyst dispersion and catalytic activity. A thorough discussion of the mechanism of the N2O catalytic reduction is made based upon results from isothermal reactions, temperature-programmed reactions (TPR) and characterization of catalysts. The effect of acidic treatment on pore structure is also discussed. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The substituted cysteine accessibility method was used to probe the surface exposure of a pore-lining threonine residue (T6') common to both the glycine receptor (GlyR) and gamma-aminobutyric acid, type A receptor (GABAAR) chloride channels. This residue lies close to the channel activation gate, the ionic selectivity filter, and the main pore blocker binding site. Despite their high amino acid sequence homologies and common role in conducting chloride ions, recent studies have suggested that the GlyRs and GABA(A)Rs have divergent open state pore structures at the 6' position. When both the human alpha1(T6'C) homomeric GlyR and the rat alpha1(T6'C)beta1(T6'C) heteromeric GABA(A)R were expressed in human embryonic kidney 293 cells, their 6' residue surface accessibilities differed significantly in the closed state. However, when a soluble cysteine-modifying compound was applied in the presence of saturating agonist concentrations, both receptors were locked into the open state. This action was not induced by oxidizing agents in either receptor. These results provide evidence for a conserved pore opening mechanism in anion-selective members of the ligand-gated ion channel family. The results also indicate that the GABA(A)R pore structure at the 6' level may vary between different expression systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The substituted cysteine accessibility method was used to probe the surface exposure of a pore-lining threonine residue (T6’) common to both the glycine receptor (GlyR) and GABAA receptor (GABAAR) chloride channels. This residue lies close to the channel activation gate, the ionic selectivity filter and the main pore blocker binding site. Recent studies have suggested that the GlyRs and GABAARs have divergent open state pore structures at the 6’ position. When both the human a1T6’C homomeric GlyR and the rat a1T6’Cb1T6’C heteromeric GABAAR were expressed in HEK293 cells, their 6’ residue surface accessibilities differed significantly in the closed state. However, when a soluble cysteine-modifying compound was applied in the presence of saturating agonist concentrations, both receptors were locked into the open state. This action was not induced by oxidising agents in either receptor. These results provide evidence for a conserved pore opening mechanism in anion-selective members of the ligand-gated ion channel family. The results also indicate that the GABAAR pore structure at the 6’ level may vary between different expression systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports for the first time superior electric double layer capacitive properties of ordered mesoporous carbon (OMCs) with varying ordered pore symmetries and mesopore structure. Compared to commercially used activated carbon electrode, Maxsorb, these OMC carbons have superior capacitive behavior, power output and high-frequency performance in EDLCs due to the unique structure of their mesopore network, which is more favorable for fast ionic transport than the pore networks in disordered microporous carbons. As evidenced by N-2 sorption, cyclic voltammetry and frequency response measurements, OMC carbons with large mesopores, and especially with 2-D pore symmetry, show superior capacitive behaviors (exhibiting a high capacitance of over 180 F/g even at very high sweep rate of 50 mV/s, as compared to much reduced capacitance of 73 F/g for Maxsorb at the same sweep rate). OMC carbons can provide much higher power density while still maintaining good energy density. OMC carbons demonstrate excellent high-frequency performances due to its higher surface area in pores larger than 3 nm. Such ordered mesoporous carbons (OMCs) offer a great potential in EDLC capacitors, particularly for applications where high power output and good high-frequency capacitive performances are required. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of the characterisation of templated silica xerogels as precursor material for molecular sieve silica membranes for gas separation. The template agent integrated in the xerogel matrix is a methyl ligand covalently bended to the siloxane network in the form of methyltriethoxysilane (MTES). Several surface and microstructural characterisation techniques such as TGA, FTIR, NMR, and nitrogen adsorption have been employed to obtain information on the reaction mechanisms involved in the sol-gel processing of such molecular sieves. The characterisation results show the effects of processing parameters such as heat treatment temperature, and the concentration of the covalently bonded template on the development of the pore structure. It was found that calcination temperature significantly enhanced the condensation reactions thus resulted in more Si-O-Si groups being formed. This was also confirmed with the data of FTIR characterisation showing enhanced silicon bands at higher heat treatment temperatures. As a result of the promoted densification and shrinkable pore network the micropore volume also reduced with increasing methyl ligand molar ratio. However, the mean pore diameter does not change significantly with calcination temperature. While the contribution of the templates towards controlling pore size is less precise, increasing the methyl ligand molar ratio results in the broadening of the pore size distribution and lower pore volume. Higher template concentration induces the collapse of the xerogel matrix due to capillary stress promoting dense xerogels with low pore volume (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and characterization of high-quality mesoporous silicoaluminophosphates (SAPOs) with a hexagonally arranged pore structure and a good thermal stability are described. The influence of some important synthesis parameters including temperature, time, and Si content in the synthesis gel was examined. The local environments of Al, P, and Si were investigated using MAS NMR spectroscopy. The acidity of the mesoporous SAPOs was studied and compared with those of aluminosilicate MCM-41 and SAPO-5. Results show that both the synthesis temperature and time have a significant impact on the formation of mesoporous SAPOs, whereas the presence of Si in the synthesis gel has a direct influence on the structure type and the quality of the resulting mesoporous SAPO materials. High-quality mesoporous SAPOs can be synthesized from the synthesis gels with Si/Al ratio smaller than 0.5 in the presence of cationic surfactants in a weakly basic aqueous solution. The mesoporous SAPO materials show interesting acidity properties, possessing both strong and mild sites. (C) 2002 Elsevier Science Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quaternary ammonium surfactants were used to control the pore structure of bentonite intercalated with a mixed hydro-sol of silicon and titanium. Porous clay heterostructures of alumina and laponite were prepared in the presence of polyethylene oxide (PEO) surfactants. Participation of the surfactants in the synthesis results in significant changes in the structure of porous clay products. Surfactants are involved in different mechanisms, In the case of bentonite, the mean size of the framework pores was directly proportional to the chain length of the quaternary ammonium surfactants. This indicates a molecular templating mechanism, similar to that observed in the synthesis of MCM41. However, in the case of laponite, the size and volume of the mesopores were related to the amount of PEO surfactants used. By using an appropriate surfactant, we can obtain highly porous clays with various pore structures. Introducing surfactants during intercalation is an efficient strategy for the molecular engineering of porous clay adsorbents and catalysts. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pore structure formation in bentonite, pillared with a mixed sol of silicon and titanium hydroxides and treated subsequently with quaternary ammonium surfactants, is investigated. The surfactant micelles act as a template, similar to their role in MCM41 synthesis. Because both the surfactant micelles and the sol particles are positively charged, it is greatly favorable for them to form meso-phase assembles in the galleries between the clay layers that bear negative charges. Besides, the sol particles do not bond the clay layers strongly as other kinds of pillar precursors do, so that the treatment with surfactants can result in radical structure changes in sol-pillared clays. This allows us to tailor the pore structure of these porous clays by choice of surfactant. The surfactant treatment also results in profound increases in porosity and improvement in thermal stability. Therefore, the product porous clays have great potential to be Used to deal with large molecules or at high operating temperatures. We also found that titanium in these samples is highly dispersed in the silica matrix rather than existing in the form of small particles of pure titania. Such highly dispersed Ti active centers may offer excellent activities for catalytic oxidation reactions such as alkanes into alcohols and ketones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variation of the crystallite structure of several coal chars during gasification in air and carbon dioxide was studied by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The XRD analysis of the partially gasified coal chars, based on two approaches, Scherrer's equation and Alexander and Sommer's method, shows a contradictory trend of the variation of the crystallite height with carbon conversion, despite giving a similar trend for the crystallite width change. The HRTEM fringe images of the partially gasified coal chars indicate that large and highly ordered crystallites exist at conversion levels as high as 86%. It is also demonstrated that the crystalline structure of chars can be very different although their pore structures are similar, suggesting a combination of crystalline structure analysis with pore structure analysis in studies of carbon gasification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasingly stringed regulations for diesel engine emissions have a significant impact on the required efficiency of DOC. Lowered DOC oxidation efficiency due to thermal aging effects influences the efficiency of the exhaust aftertreatment systems downstream of the DOC. In this work carried out in the Jean Le Rond d’Alembert Institute the effect of hydrothermal aging on the reactivity and structure of a commercial DOC was investigated. The characterization of the catalytic performance was carried out on a synthetic gas bench using carrots catalyst under conditions close to the realistic conditions i.e. using a synthetic gas mixture, representative of the exhaust gases from diesel engines. Different structural characterization techniques were performed: textural and morphological proprieties were analyzed by BET and TEM, the characterization of the presented crystallographic phases was performed by DRX and the determination of the number of reducible species was possible by TPR. TEM results shown, an increase of the metal particle size with the aging caused by the agglomeration of metal particles, revealing the presence of metal sintering. DRX results also suggest the presence of support sintering. Furthermore, DRX and BET results unexpectedly reveal that the most drastic aging conditions used actually activated the catalyst surface. As expected, the aging affected negatively the catalyst performance on the oxidation of methane and CO, however an improvement of the NO oxidation performance with the aging was observed. Nevertheless, for the aging conditions used, catalytic activity results show that the influence of aging in DOC performance was not significant, and therefore, more drastic aging conditions must be used.