960 resultados para Population Viability Analysis
Resumo:
Objective: It is usual that data collected from routine clinical care is sparse and unable to support the more complex pharmacokinetic (PK) models that may have been reported in previous rich data studies. Informative priors may be a pre-requisite for model development. The aim of this study was to estimate the population PK parameters of sirolimus using a fully Bayesian approach with informative priors. Methods: Informative priors including prior mean and precision of the prior mean were elicited from previous published studies using a meta-analytic technique. Precision of between-subject variability was determined by simulations from a Wishart distribution using MATLAB (version 6.5). Concentration-time data of sirolimus retrospectively collected from kidney transplant patients were analysed using WinBUGS (version 1.3). The candidate models were either one- or two-compartment with first order absorption and first order elimination. Model discrimination was based on computation of the posterior odds supporting the model. Results: A total of 315 concentration-time points were obtained from 25 patients. Most data were clustered at trough concentrations with range of 1.6 to 77 hours post-dose. Using informative priors, either a one- or two-compartment model could be used to describe the data. When a one-compartment model was applied, information was gained from the data for the value of apparent clearance (CL/F = 18.5 L/h), and apparent volume of distribution (V/F = 1406 L) but no information was gained about the absorption rate constant (ka). When a two-compartment model was fitted to the data, the data were informative about CL/F, apparent inter-compartmental clearance, and apparent volume of distribution of the peripheral compartment (13.2 L/h, 20.8 L/h, and 579 L, respectively). The posterior distribution of the volume distribution of central compartment and ka were the same as priors. The posterior odds for the two-compartment model was 8.1, indicating the data supported the two-compartment model. Conclusion: The use of informative priors supported the choice of a more complex and informative model that would otherwise have not been supported by the sparse data.
Resumo:
This research first evaluated the effects of urban wildland interface on reproductive biology of the Big Pine Partridge Pea, Chamaecrista keyensis, an understory herb that is endemic to Big Pine Key, Florida. I found that C. keyensis was self-compatible, but depended on bees for seed set. Furthermore, individuals of C. keyensis in urban habitats suffered higher seed predation and therefore set fewer seeds than forest interior plants. ^ I then focused on the effects of fire at different times of the year, summer (wet) and winter (dry), on the population dynamics and population viability of C. keyensis. I found that C. keyensis population recovered faster after winter burns and early summer burns (May–June) than after late summer burns (July–September) due to better survival and seedling recruitment following former fires. Fire intensity had positive effects on reproduction of C. keyensis. In contrast, no significant fire intensity effects were found on survival, growth, and seedling recruitment. This indicated that better survival and seedling recruitment following winter and early summer burns (compared with late summer burns) were due to the reproductive phenology of the plant in relation to fires rather than differences in fire intensity. Deterministic population modeling showed that time since fire significantly affected the finite population growth rates (λ). Particularly, recently burned plots had the largest λ. In addition, effects of timing of fires on λ were most pronounced the year of burn, but not the subsequent years. The elasticity analyses suggested that maximizing survival is an effective way to minimize the reduction in finite population growth rate the year of burn. Early summer fires or dry-season fires may achieve this objective. Finally, stochastic simulations indicated that the C. keyensis population had lower extinction risk and population decline probability if burned in the winter than in the late summer. A fire frequency of approximately 7 years would create the lowest extinction probability for C. keyensis. A fire management regime including a wide range of burning seasons may be essential for the continued existence of C. keyensis and other endemic species of pine rockland on Big Pine Key. ^
Resumo:
Background: Celiac disease (CD) has a negative impact on the health-related quality of life (HRQL) of affected patients. Although HRQL and its determinants have been examined in Spanish CD patients specifically recruited in hospital settings, these aspects of CD have not been assessed among the general Spanish population. Methods: An observational, cross-sectional study of a non-randomized, representative sample of adult celiac patients throughout all of Spain's Autonomous Regions. Subjects were recruited through celiac patient associations. A Spanish version of the self-administered Celiac Disease-Quality of Life (CD-QOL) questionnaire was used. Determinant factors of HRQL were assessed with the aid of multivariate analysis to control for confounding factors. Results: We analyzed the responses provided by 1,230 patients, 1,092 (89.2%) of whom were women. The overall mean value for the CD-QOL index was 56.3 ± 18.27 points. The dimension that obtained the most points was dysphoria, with 81.3 ± 19.56 points, followed by limitations with 52.3 ± 23.43 points; health problems, with 51.6 ± 26.08 points, and inadequate treatment, with 36.1 ± 21.18 points. Patient age and sex, along with time to diagnosis, and length of time on a gluten-free diet were all independent determinant factors of certain dimensions of HRQL: women aged 31 to 40 expressed poorer HRQL while time to diagnosis and length of time on a gluten-free diet were determinant factors for better HRQL scores. Conclusions: The HRQL level of adult Spanish celiac subjects is moderate, improving with the length of time patients remain on a gluten-free diet.
Resumo:
The domestication and selection processes in pigs and rabbits have resulted in the constitution of multiple breeds with broad phenotypic diversity. Population genomics analysis and Genome-wide association study analysis can be utilized to gain insights into the ancestral origins, genetic diversity, and the presence of lethal mutations across these diverse breeds. In this thesis, we analysed the dataset obtained from three Italian Pig breeds to detect deleterious alleles. We screened the dataset for genetic markers showing homozygous deficiency using two approaches single marker and haplotype-based approach. Moreover, Genome-wide association study analyses were performed to detect genetic markers associated with pigs' reproductive traits. In rabbits, we investigated the application of SNP bead chip for detection signatures of selection in rabbits using different methods. This analysis was implemented for the first time in different fancy and meet rabbit breeds. Multiple approaches were utilized for the detection of the selection of signatures including Fst analysis, ROH analysis, PCAdapt analysis, and haplotype-based analysis. The analysis in pigs was able to identify five putative deleterious SNPs and nine putative deleterious haplotypes in the analysed Italian Pig breeds. The genomic regions of the detected putative deleterious genomic markers harboring loss of function variants such as the Frameshift variant, start lost, and splice donor variant. Those variants are close to important candidate genes such as IGF2BP1, ADGRL4, and HGF. In rabbits, multiple genomic regions were detected to be under selection of signature. These genomic regions harbor candidate genes associated with coat color phenotype (MC1R, TYR, and ASIP), hair structure (LIPH), and body size (HMGA2 and COL2A1). The described results in rabbits and pigs could be used to improve breeding programs by excluding the deleterious genetic markers carriers and incorporating candidate genes for coat color, body size, and meat production in rabbit breeding programs to enhance desired traits
Resumo:
Size distributions in woody plant populations have been used to assess their regeneration status, assuming that size structures with reverse-J shapes represent stable populations. We present an empirical approach of this issue using five woody species from the Cerrado. Considering count data for all plants of these five species over a 12-year period, we analyzed size distribution by: a) plotting frequency distributions and their adjustment to the negative exponential curve and b) calculating the Gini coefficient. To look for a relationship between size structure and future trends, we considered the size structures from the first census year. We analyzed changes in number over time and performed a simple population viability analysis, which gives the mean population growth rate, its variance and the probability of extinction in a given time period. Frequency distributions and the Gini coefficient were not able to predict future trends in population numbers. We recommend that managers should not use measures of size structure as a basis for management decisions without applying more appropriate demographic studies.
Resumo:
Reviews the ecological status of the mahogany glider and describes its distribution, habitat and abundance, life history and threats to it. Three serial surveys of Brisbane residents provide data on the knowledge of respondents about the mahogany glider. The results provide information about the attitudes of respondents to the mahogany glider, to its conservation and relevant public policies and about variations in these factors as the knowledge of participants of the mahogany glider alters. Similarly data is provided and analysed about the willingness to pay of respondents to conserve the mahogany glider. Population viability analysis is applied to estimate the required habitat area for a minimum viable population of the mahogany glider to ensure at least a 95% probability of its survival for 100 years. Places are identified in Queensland where the requisite minimum area of critical habitat can be conserved. Using the survey results as a basis, the likely willingness of groups of Australians to pay for the conservation of the mahogany glider is estimated and consequently their willingness to pay for the minimum required area of its habitat. Methods for estimating the cost of protecting this habitat are outlined. Australia-wide benefits seem to exceed the costs. Establishing a national park containing the minimum viable population of the mahogany glider is an appealing management option. This would also be beneficial in conserving other endangered wildlife species. Therefore, additional economic benefits to those estimated on account of the mahogany glider itself can be obtained.
Resumo:
Realistic time frames in which management decisions are made often preclude the completion of the detailed analyses necessary for conservation planning. Under these circumstances, efficient alternatives may assist in approximating the results of more thorough studies that require extensive resources and time. We outline a set of concepts and formulas that may be used in lieu of detailed population viability analyses and habitat modeling exercises to estimate the protected areas required to provide desirable conservation outcomes for a suite of threatened plant species. We used expert judgment of parameters and assessment of a population size that results in a specified quasiextinction risk based on simple dynamic models The area required to support a population of this size is adjusted to take into account deterministic and stochastic human influences, including small-scale disturbance deterministic trends such as habitat loss, and changes in population density through processes such as predation and competition. We set targets for different disturbance regimes and geographic regions. We applied our methods to Banksia cuneata, Boronia keysii, and Parsonsia dorrigoensis, resulting in target areas for conservation of 1102, 733, and 1084 ha, respectively. These results provide guidance on target areas and priorities for conservation strategies.
Resumo:
Models of population dynamics are commonly used to predict risks in ecology, particularly risks of population decline. There is often considerable uncertainty associated with these predictions. However, alternatives to predictions based on population models have not been assessed. We used simulation models of hypothetical species to generate the kinds of data that might typically be available to ecologists and then invited other researchers to predict risks of population declines using these data. The accuracy of the predictions was assessed by comparison with the forecasts of the original model. The researchers used either population models or subjective judgement to make their predictions. Predictions made using models were only slightly more accurate than subjective judgements of risk. However, predictions using models tended to be unbiased, while subjective judgements were biased towards over-estimation. Psychology literature suggests that the bias of subjective judgements is likely to vary somewhat unpredictably among people, depending on their stake in the outcome. This will make subjective predictions more uncertain and less transparent than those based on models. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
A decision theory framework can be a powerful technique to derive optimal management decisions for endangered species. We built a spatially realistic stochastic metapopulation model for the Mount Lofty Ranges Southern Emu-wren (Stipiturus malachurus intermedius), a critically endangered Australian bird. Using diserete-time Markov,chains to describe the dynamics of a metapopulation and stochastic dynamic programming (SDP) to find optimal solutions, we evaluated the following different management decisions: enlarging existing patches, linking patches via corridors, and creating a new patch. This is the first application of SDP to optimal landscape reconstruction and one of the few times that landscape reconstruction dynamics have been integrated with population dynamics. SDP is a powerful tool that has advantages over standard Monte Carlo simulation methods because it can give the exact optimal strategy for every landscape configuration (combination of patch areas and presence of corridors) and pattern of metapopulation occupancy, as well as a trajectory of strategies. It is useful when a sequence of management actions can be performed over a given time horizon, as is the case for many endangered species recovery programs, where only fixed amounts of resources are available in each time step. However, it is generally limited by computational constraints to rather small networks of patches. The model shows that optimal metapopulation, management decisions depend greatly on the current state of the metapopulation,. and there is no strategy that is universally the best. The extinction probability over 30 yr for the optimal state-dependent management actions is 50-80% better than no management, whereas the best fixed state-independent sets of strategies are only 30% better than no management. This highlights the advantages of using a decision theory tool to investigate conservation strategies for metapopulations. It is clear from these results that the sequence of management actions is critical, and this can only be effectively derived from stochastic dynamic programming. The model illustrates the underlying difficulty in determining simple rules of thumb for the sequence of management actions for a metapopulation. This use of a decision theory framework extends the capacity of population viability analysis (PVA) to manage threatened species.