959 resultados para Polynomial distributed lag models
Resumo:
Allocations of research funds across programs are often made for efficiency reasons. Social science research is shown to have small, lagged but significant effects on U.S. agricultural efficiency when public agricultural R&D and extension are simultaneously taken into account. Farm management and marketing research variables are used to explain variations in estimates of allocative and technical efficiency using a Bayesian approach that incorporates stylized facts concerning lagged research impacts in a way that is less restrictive than popular polynomial distributed lags. Results are reported in terms of means and standard deviations of estimated probability distributions of parameters and long-run total multipliers. Extension is estimated to have a greater impact on both allocative and technical efficiency than either R&D or social science research.
Resumo:
In this paper, we present a top down approach for integrated process modelling and distributed process execution. The integrated process model can be utilized for global monitoring and visualization and distributed process models for local execution. Our main focus in this paper is the presentation of the approach to support automatic generation and linking of distributed process models from an integrated process definition.
Resumo:
As massive data sets become increasingly available, people are facing the problem of how to effectively process and understand these data. Traditional sequential computing models are giving way to parallel and distributed computing models, such as MapReduce, both due to the large size of the data sets and their high dimensionality. This dissertation, as in the same direction of other researches that are based on MapReduce, tries to develop effective techniques and applications using MapReduce that can help people solve large-scale problems. Three different problems are tackled in the dissertation. The first one deals with processing terabytes of raster data in a spatial data management system. Aerial imagery files are broken into tiles to enable data parallel computation. The second and third problems deal with dimension reduction techniques that can be used to handle data sets of high dimensionality. Three variants of the nonnegative matrix factorization technique are scaled up to factorize matrices of dimensions in the order of millions in MapReduce based on different matrix multiplication implementations. Two algorithms, which compute CANDECOMP/PARAFAC and Tucker tensor decompositions respectively, are parallelized in MapReduce based on carefully partitioning the data and arranging the computation to maximize data locality and parallelism.
Resumo:
This paper contributes to the literature by empirically examining whether the influence of public debt on economic growth differs between the short and the long run and presents different patterns across euro-area countries. To this end, we use annual data from both central and peripheral countries of the European Economic and Monetary Union (EMU) for the 1960-2012 period and estimate a growth model augmented for public debt using the Autoregressive Distributed Lag (ARDL) bounds testing approach. Our findings tend to support the view that public debt always has a negative impact on the long-run performance of EMU countries, whilst its short-run effect may be positive depending on the country.
Resumo:
Solving linear systems is an important problem for scientific computing. Exploiting parallelism is essential for solving complex systems, and this traditionally involves writing parallel algorithms on top of a library such as MPI. The SPIKE family of algorithms is one well-known example of a parallel solver for linear systems. The Hierarchically Tiled Array data type extends traditional data-parallel array operations with explicit tiling and allows programmers to directly manipulate tiles. The tiles of the HTA data type map naturally to the block nature of many numeric computations, including the SPIKE family of algorithms. The higher level of abstraction of the HTA enables the same program to be portable across different platforms. Current implementations target both shared-memory and distributed-memory models. In this thesis we present a proof-of-concept for portable linear solvers. We implement two algorithms from the SPIKE family using the HTA library. We show that our implementations of SPIKE exploit the abstractions provided by the HTA to produce a compact, clean code that can run on both shared-memory and distributed-memory models without modification. We discuss how we map the algorithms to HTA programs as well as examine their performance. We compare the performance of our HTA codes to comparable codes written in MPI as well as current state-of-the-art linear algebra routines.
An empirical investigation of the impact of global energy transition on Nigerian oil and gas exports
Resumo:
18 months embargo on the thesis and check appendix for copy right materials
Resumo:
Membrane systems are computational equivalent to Turing machines. However, their distributed and massively parallel nature obtains polynomial solutions opposite to traditional non-polynomial ones. At this point, it is very important to develop dedicated hardware and software implementations exploiting those two membrane systems features. Dealing with distributed implementations of P systems, the bottleneck communication problem has arisen. When the number of membranes grows up, the network gets congested. The purpose of distributed architectures is to reach a compromise between the massively parallel character of the system and the needed evolution step time to transit from one configuration of the system to the next one, solving the bottleneck communication problem. The goal of this paper is twofold. Firstly, to survey in a systematic and uniform way the main results regarding the way membranes can be placed on processors in order to get a software/hardware simulation of P-Systems in a distributed environment. Secondly, we improve some results about the membrane dissolution problem, prove that it is connected, and discuss the possibility of simulating this property in the distributed model. All this yields an improvement in the system parallelism implementation since it gets an increment of the parallelism of the external communication among processors. Proposed ideas improve previous architectures to tackle the communication bottleneck problem, such as reduction of the total time of an evolution step, increase of the number of membranes that could run on a processor and reduction of the number of processors.
Resumo:
A total of 152,145 weekly test-day milk yield records from 7317 first lactations of Holstein cows distributed in 93 herds in southeastern Brazil were analyzed. Test-day milk yields were classified into 44 weekly classes of DIM. The contemporary groups were defined as herd-year-week of test-day. The model included direct additive genetic, permanent environmental and residual effects as random and fixed effects of contemporary group and age of cow at calving as covariable, linear and quadratic effects. Mean trends were modeled by a cubic regression on orthogonal polynomials of DIM. Additive genetic and permanent environmental random effects were estimated by random regression on orthogonal Legendre polynomials. Residual variances were modeled using third to seventh-order variance functions or a step function with 1, 6,13,17 and 44 variance classes. Results from Akaike`s and Schwarz`s Bayesian information criterion suggested that a model considering a 7th-order Legendre polynomial for additive effect, a 12th-order polynomial for permanent environment effect and a step function with 6 classes for residual variances, fitted best. However, a parsimonious model, with a 6th-order Legendre polynomial for additive effects and a 7th-order polynomial for permanent environmental effects, yielded very similar genetic parameter estimates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper considers the lag structures of dynamic models in economics, arguing that the standard approach is too simple to capture the complexity of actual lag structures arising, for example, from production and investment decisions. It is argued that recent (1990s) developments in the the theory of functional differential equations provide a means to analyse models with generalised lag structures. The stability and asymptotic stability of two growth models with generalised lag structures are analysed. The paper concludes with some speculative discussion of time-varying parameters.
Resumo:
In Quantitative Microbial Risk Assessment, it is vital to understand how lag times of individual cells are distributed over a bacterial population. Such identified distributions can be used to predict the time by which, in a growth-supporting environment, a few pathogenic cells can multiply to a poisoning concentration level. We model the lag time of a single cell, inoculated into a new environment, by the delay of the growth function characterizing the generated subpopulation. We introduce an easy-to-implement procedure, based on the method of moments, to estimate the parameters of the distribution of single cell lag times. The advantage of the method is especially apparent for cases where the initial number of cells is small and random, and the culture is detectable only in the exponential growth phase.
Resumo:
Distributed computing paradigms for sharing resources such as Clouds, Grids, Peer-to-Peer systems, or voluntary computing are becoming increasingly popular. While there are some success stories such as PlanetLab, OneLab, BOINC, BitTorrent, and SETI@home, a widespread use of these technologies for business applications has not yet been achieved. In a business environment, mechanisms are needed to provide incentives to potential users for participating in such networks. These mechanisms may range from simple non-monetary access rights, monetary payments to specific policies for sharing. Although a few models for a framework have been discussed (in the general area of a "Grid Economy"), none of these models has yet been realised in practice. This book attempts to fill this gap by discussing the reasons for such limited take-up and exploring incentive mechanisms for resource sharing in distributed systems. The purpose of this book is to identify research challenges in successfully using and deploying resource sharing strategies in open-source and commercial distributed systems.
Resumo:
Purpose – To describe some research done, as part of an EPSRC funded project, to assist engineers working together on collaborative tasks. Design/methodology/approach – Distributed finite state modelling and agent techniques are used successfully in a new hybrid self-organising decision making system applied to collaborative work support. For the particular application, analysis of the tasks involved has been performed and these tasks are modelled. The system then employs a novel generic agent model, where task and domain knowledge are isolated from the support system, which provides relevant information to the engineers. Findings – The method is applied in the despatch of transmission commands within the control room of The National Grid Company Plc (NGC) – tasks are completed significantly faster when the system is utilised. Research limitations/implications – The paper describes a generic approach and it would be interesting to investigate how well it works in other applications. Practical implications – Although only one application has been studied, the methodology could equally be applied to a general class of cooperative work environments. Originality/value – One key part of the work is the novel generic agent model that enables the task and domain knowledge, which are application specific, to be isolated from the support system, and hence allows the method to be applied in other domains.