974 resultados para Polymer-bound Antioxidants
Resumo:
The hydrolysis reaction mechanism of phosphite antioxidants is investigated by liquid chromatography-mass spectrometry (LC/MS). The phosphites were chosen because they differed in chemical structure and phosphorus content. Dopant assisted-atmospheric pressure photoionization (DA-APPI) is chosen as the ion source for (lie ionization of the compounds. [it our previous work, DA-APPI was shown to offer an attractive alternative to atmospheric pressure chemical ionization (APCI) since it provided background-ion free mass spectra and higher sensitivity [M. Papanastasiou, et al., Polymer Degradation and Stability 91 (11) (2006) 2675-2682]. In positive ion mode, the molecules are generally detected in their protonated form. In negative ion mode, the phosphites are unstable and only fragment ions are observed: these however, are characteristic of each phosphite and may be used for the identification of the analytes in complex mixtures. The analytes under investigation are exposed to accelerated humid ageing conditions and their hydrolytic pathway and stability is investigated. Different substituents around the phosphorus atom are shown to have a significant effect on the stability of the phosphites, with phenol substituents producing very hydrolytically stable structures. Alkanox P24 and PEP-36 follow a similar hydrolytic pathway via the scission of the first and then the second P-O-phenol bonds, eventually leading to the formation of phenol, Phosphorous acid and pentaerythritol as end products. HP-10 exhibits a rather different Structure and the products detected suggest scission of either the P-O-hydrocarbon or one of the P-O-phenol bonds. A phenomenon similar to that of autocatalysis is observed for all phosphites and is attributed to the formation of dialkyl phosphites as intermediate products. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
An increase of the reports involving mimetic systems has been observed. Briefly, these systems use biological phospholipids to exploit specific interactions between membrane-models and drugs. Here, the Layer-by-Layer (LbL) and Langmuir techniques were used to investigate the interaction between cardiolipin (CLP-negative phospholipid) and a cationic-like drug methylene blue (MB). Supported by a cationic polyelectrolyte (PAH), LbL films containing PAH/(CLP + MB) and PAH/(CLP + MB + AgNP) were grown up to 14 bilayers. The optical microscopy analysis revealed a decrease of the CLP vesicle sizes in the presence of MB as a possible consequence of the MB action onto the mechanical properties of the CLP membrane. From FTIR spectra, changes mainly related to peak position and band intensity and shape were observed in the spectra from PAH/CLP when in the presence of MB. The latter supports that the interactions between the phosphate and amine charged groups from CLP and PAH, respectively, established during the LbL film fabrication, besides the CLP hydrocarbon environment, are influenced by the presence of MB. Using the micro-Raman technique, a chemical mapping was build based on MB spectrum by resonance Raman scattering (RRS) and surface-enhanced resonance Raman scattering (SERRS). The later phenomenon was activated by Ag nanoparticles (AgNPs) trapped within the LbL film allowing collecting spectra for a single bilayer of PAH/(CLP + MB + AgNP). A rough estimation showed a SERRS amplification of 10(3) in comparison to RRS spectra. As a complementary approach, Langmuir films of CLP in the presence of co-spread MB were investigated through surface pressure vs mean molecular area (pi-A) isotherms. The results showed that for concentrations of MB below 100 mol%, the drug is expelled to water subphase for high values of surface pressure (condensed phase). For concentration at 100% and higher, the MB keeps bound to CLP floating monolayer. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Measurements of 1H Nuclear Magnetic Resonance (NMR) relaxation times, Electron Paramagnetic Resonance (EPR) and AC Impedance Spectroscopy (IS) are reported for composites based on PEO8:LiClO4 and carbon black (CB), prepared by two methods: solvent and fusion processing. Three nuclear relaxation processes were identified for 1H nuclei: (i) belonging to the polymer chains in the amorphous phase, loosely bound to the CB particles, whose dynamics is almost the same as for unfilled polymer, (ii) belonging to the polymer chains which are tightly attached to the CB particles, and (iii) belonging to the crystalline phase in the loose polymer chain. The paramagnetic electronic susceptibility of the composite samples, measured by EPR, was interpreted by assuming a contribution of localized spin states that follow a Curie law, and a Pauli-like contribution of delocalized spins. A significant change of the EPR linewidth was observed at 40 K, which is the temperature where the Curie and Pauli susceptibilities equally contribute to the paramagnetic electronic susceptibility. The electrical properties are very sensitive to the preparation methods of the composites, which conditions the interaction between carbon particle-carbon particle and carbon particle-polymer chain. Classical statistic models to describe the conductivity in these media were not satisfactory. © 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The one-dimensional coordination polymer of palladium(II) with pyrazolato (Pz -) and azide (N 3 -) as bridging ligands, of formula [Pd 3(μ-N 3)(μ-Pz) 5] n, has been prepared. From IR and Raman studies it was evidenced the exobidentate nature of pyrazole ligands as well the μ-1,1-bridging coordination of azido groups. NMR experiments showed two sets of broadened signals with different intensities indicating the presence of pyrazolato groups in distinct chemical environments. The proposed structure of [Pd 3(μ-N 3)(μ-Pz) 5] n consists of a zigzag ribbon in which each (Pz) 2Pd(Pz) 2 entity is bound to two stacked planar units [Pd(μ-Pz)(μ-N 3)Pd core] with very weak Pd-Pd interaction, based on UV-Vis spectroscopy.
Resumo:
Liquid Crystal Polymer Brushes and their Application as Alignment Layers in Liquid Crystal Cells Polymer brushes with liquid crystalline (LC) side chains were synthesized on planar glass substrates and their nematic textures were investigated. The LC polymers consist of an acrylate or a methacrylate main chain and a phenyl benzoate group as the mesogenic unit which is connected to the main chain via a flexible alkyl spacer composed of six CH2 units. The preparation of the LC polymer brushes was carried out according to the grafting from technique: polymerization is carried out from azo-initiators that have been previously self-assembled on the substrate. LC polymer brushes with a thickness from a few nm to 230 nm were synthesized by varying the monomer concentration and the polymerization time. The LC polymer brushes were thick enough to allow for direct observation of the nematic textures with a polarizing microscope. The LC polymer brushes grown on untreated glass substrates exhibited irregular textures (polydomains). The domain size is in the range of some micrometers and depends only weakly on the brush thickness. The investigations on the texture-temperature relationship of the LC brushes revealed that the brushes exhibit a surface memory effect, that is, the identical texture reappears after the LC brush sample has experienced a thermal isotropization or a solvent treatment, at which the nematic LC state has been completely destroyed. The surface memory effect is attributed to a strong anchoring of the orientation of the mesogenic units to heterogeneities at the substrate surface. The exact nature of the surface heterogeneities is unknown. The effect was observed for the LC brushes swollen with low molecular weight nematic molecules, as well. Rubbing the glass substrate with a piece of velvet cloth prior to the surface modification with the initiator and the brush growth gives rise to the formation of homogenous alignment of the mesogenic units in the LC polymer side chains. Monodomain textures were obtained for these LC brushes. The mechanism for the homogeneous alignment is based on the transfer of Nylon fibers during the rubbing process. A surfactant was mixed with the azo-initiator in modifying rubbed substrates for subsequent brush generation. Such brushes exhibited biaxial optical properties. Hybrid LC cells made from a substrate modified with biaxial brushes and a rubbed glass substrate show an orientation with a tilt angle of a = 15.6 . This work shows that LC brushes grown on rubbed surfaces fulfill the important criteria for alignment layers: the formation of macroscopic monodomains. First results indicate that by diluting the brush with molecules which are also covalently bound to the surface but induce a different orientation, a system is obtained in which the two conflicting alignment mechanisms can be used to generate a tilted alignment. In order to allow for an application of the alignment layers into a potential product, subsequent work should focus on the questions how easy and in which range the tilt angle can be controlled.
Resumo:
A hybrid structure of a synthetic dendronized polymer, two different types of enzymes (superoxide dismutase and horseradish peroxidase), and a fluorescent dye (fluorescein) was synthesized. Thereby, a single polymer chain carried multiple copies of the two enzymes and the fluorescein. The entire attachment chemistry is based on UV/vis-quantifiable bis-aryl hydrazone bond formation that allows direct quantification of bound molecules: 60 superoxide dismutase, 120 horseradish peroxidase, and 20 fluorescein molecules on an average polymer chain of 2000 repeating units. To obtain other enzyme ratios the experimental conditions were altered accordingly. Moreover, it could be shown that both enzymes remained fully active and catalyzed a two-step cascade reaction.
Resumo:
A quantitative model of interphase chromosome higher-order structure is presented based on the isochore model of the genome and results obtained in the field of copolymer research. G1 chromosomes are approximated in the model as multiblock copolymers of the 30-nm chromatin fiber, which alternately contain two types of 0.5- to 1-Mbp blocks (R and G minibands) differing in GC content and DNA-bound proteins. A G1 chromosome forms a single-chain string of loop clusters (micelles), with each loop ∼1–2 Mbp in size. The number of ∼20 loops per micelle was estimated from the dependence of geometrical versus genomic distances between two points on a G1 chromosome. The greater degree of chromatin extension in R versus G minibands and a difference in the replication time for these minibands (early S phase for R versus late S phase for G) are explained in this model as a result of the location of R minibands at micelle cores and G minibands at loop apices. The estimated number of micelles per nucleus is close to the observed number of replication clusters at the onset of S phase. A relationship between chromosomal and nuclear sizes for several types of higher eukaryotic cells (insects, plants, and mammals) is well described through the micelle structure of interphase chromosomes. For yeast cells, this relationship is described by a linear coil configuration of chromosomes.
Resumo:
Most analyses of Brownian flocculation apply to conditions where London–van der Waals attractive forces cause particles to be strongly bound in a deep interparticle potential well. In this paper, results are reported that show the interaction between primary- and secondary-minimum flocculation when the interparticle potential curve reflects both attractive and electrostatic repulsive forces. The process is highly time-dependent because of transfer of particles from secondary- to primary-minimum flocculation. Essential features of the analysis are corroborated by experiments with 0.80-μm polystyrene spheres suspended in aqueous solutions of NaCl over a range of ionic strengths. In all cases, experiments were restricted to the initial stage of coagulation, where singlets and doublets predominate.
Resumo:
The synthesis of nano-sized ZIF-11 with an average size of 36 ± 6 nm is reported. This material has been named nano-zeolitic imidazolate framework-11 (nZIF-11). It has the same chemical composition and thermal stability and analogous H2 and CO2 adsorption properties to the conventional microcrystalline ZIF-11 (i.e. 1.9 ± 0.9 μm). nZIF-11 has been obtained following the centrifugation route, typically used for solid separation, as a fast new technique (pioneering for MOFs) for obtaining nanomaterials where the temperature, time and rotation speed can easily be controlled. Compared to the traditional synthesis consisting of stirring + separation, the reaction time was lowered from several hours to a few minutes when using this centrifugation synthesis technique. Employing the same reaction time (2, 5 or 10 min), micro-sized ZIF-11 was obtained using the traditional synthesis while nano-scale ZIF-11 was achieved only by using centrifugation synthesis. The small particle size obtained for nZIF-11 allowed the use of the wet MOF sample as a colloidal suspension stable in chloroform. This helped to prepare mixed matrix membranes (MMMs) by direct addition of the membrane polymer (polyimide Matrimid®) to the colloidal suspension, avoiding particle agglomeration resulting from drying. The MMMs were tested for H2/CO2 separation, improving the pure polymer membrane performance, with permeation values of 95.9 Barrer of H2 and a H2/CO2 separation selectivity of 4.4 at 35 °C. When measured at 200 °C, these values increased to 535 Barrer and 9.1.
Resumo:
Proteins are susceptible to oxidation by reactive oxygen species, where the type of damage induced is characteristic of the denaturing species. The induction of protein carbonyls is a widely applied biomarker, arising from primary oxidative insult. However, when applied to complex biological and pathological conditions it can be subject to interference from lipid, carbohydrate and DNA oxidation products. More recently, interest has focused on the analysis of specific protein bound oxidised amino acids. Of the 22 amino acids, aromatic and sulphydryl containing residues have been regarded as being particularly susceptible to oxidative modification, with L-DOPA from tyrosine, ortho-tyrosine from phenylalanine; sulphoxides and disulphides from methionine and cysteine respectively; and kynurenines from tryptophan. Latterly, the identification of valine and leucine hydroxides, reduced from hydroperoxide intermediates, has been described and applied. In order to examine the nature of oxidative damage and protective efficacy of antioxidants the markers must be thoroughly evaluated for dosimetry in vitro following damage by specific radical species. Antioxidant protection against formation of the biomarker should be demonstrated in vitro. Quantification of biomarkers in proteins from normal subjects should be within the limits of detection of any analytical procedure. Further to this, the techniques for isolation and hydrolysis of specific proteins should demonstrate that in vitro oxidation is minimised. There is a need for the development of standards for quality assurance material to standardise procedures between laboratories. At present, antioxidant effects on protein oxidation in vivo are limited to animal studies, where dietary antioxidants have been reported to reduce dityrosine formation during rat exercise training. Two studies on humans have been reported last year. The further application of these methods to human studies is indicated, where the quality of the determinations will be enhanced through inter-laboratory validation.
Resumo:
The effects of ester plasticizers and copolymers on the mechanical properties of the natural biodegradable polymers, poly(3-hydroxybutyrate) [PHB] and poly(lactic acid) [PLA] have been studied after subjecting to melt processing conditions. Ester plasticizers were synthesized from citric, tartaric and maleic acids using various alcohols. A variety of PLA copolymers have also been prepared from poly(ethylene glycol) derivatives using stannous octanoate catalysed ring opening polymerisations of DL-lactide. A novel PLA star copolymer was also prepared from an ethoxylated pentaerythritol. The structures of these copolymers were determined by NMR spectroscopy. The plasticizing effect of the synthesised additives at various concentrations was determined. While certain additives were capable of improving the mechanical properties of PLA, none were effective in PHB. Moreover, it was found that certain combinations of additives exhibited synergistic effects. Possible mechanisms are discussed. Biotic and abiotic degradation studies showed that the plasticizers (esters and copolymers) did not inhibit the biodegradability of PHB or PLA in compost at 60°C. Simple toxicity tests carried out on compost extract and its ability to support the growth of cress seeds was established. PLA was found to be susceptible to limited thermal degradation under melt processing conditions. Conventional phenolic antioxidants showed no significant effect on this process, suggesting that degradation was not predominantly a free radical process. PLA also underwent photo-oxidative degradation with UV light and the process could be accelerated in the presence of a photoactivator such as iron (III) diisononyl dithiocarbamate. The mechanisms for the above processes are discussed. Finally, selected compounds were prepared on a pilot plant scale. Extruded and blown films were prepared containing these additives with conventional polymer processing equipment. The mechanical properties were similar to those obtained with laboratory produced compression moulded films.
Resumo:
Various monoacrylic compounds containing a hindered phenol function (e.g.3,5-di-tert.-butyl-4-hydroxy benzyl alcohol, DBBA and vinyl-3-[3',5'-di-tert.-butyl-4-hydroxy phenyl] propionate, VDBP), and a benzophenone function (2-hydroxy-4-[beta hydroxy ethoxy] benzophenone, HAEB) were synthesised and used as reactive antioxidants (AO's) for polypropylene (PP). These compounds were reacted with PP melt in the presence of low concentration of a free radical generator such a peroxide (reactive processing) to produce bound-antioxidant concentrates. The binding reaction of these AO's onto PP was found to be low and this was shown to be mainly due to competing reactions such as homopolymerisation of the antioxidant. At high concentrations of peroxide, higher binding efficiency resulted, but, this was accompanied by melt degradation of the polymer. In a special reactive processing procedure, a di- or a trifunctional reactant (referred to as coagent), e.g.tri-methylol propane tri-acrylate, Tris, and Divinyl benzene, DVB, were used with the antioxidant and this has led to an enhanced efficiency of the grating reaction of antioxidants on the polymer in the melt. The evidence suggests that this is due to copolymerisation of the antioxidants with the coagent as well as grafting of the copolymers onto the polymer backbone. Although the 'bound' AO's containing a UV stabilising function showed lower overall stabilisation effect than the unbound analogues before extraction, they were still much more effective when subjected to exhaustive solvent extraction. Furthermore, a very effective synergistic stabilising activity when two reactive AO's containing thermal and UV stabilising functions e.g. DBBA and HAEB, were reactively processed with PP in the presence of a coagent. The stabilising effectiveness of such a synergist was much higher than that of the unbound analogues both before and after extraction. Analysis using the GPC technique of concentrates containing bound-DBBA processed in the presence of Tris coagent showed higher molecular weight (Mn), compared to that of a polymer processed without the coagent, but was still lower than that of the control processed PP with no additives. This indicates that Tris coagent may inhibit further melt degradation of the polymer. Model reactions of DBBA in liquid hydrocarbon (decalin) and analysis of the products using FTIR and NMR spectroscopy showed the formation of grafted DBBA onto decalin molecules as well as homopolymerisation of the AO. In the presence of Tris coagent, copolymerisation of DBBA with the Tris inevitably occured; which was followed by grafting of the copolymer onto the decalin, FTIR and NMR results of the polymer concentrates containing bound-DBBA processed with and without Tris, showed similar behaviour as the above model reactions. This evidence supports the effect of Tris in enhancing the efficiency of the reaction of DBBA in the polymer melt. Reactive procesing of HAEB in polymer melts exhibited crosslinking formation In the early stages of the reaction, however, in the final stage, the crosslinked structure was 'broken down' or rearranged to give an almost gel free polymer with high antioxidant binding efficiency.
Resumo:
The effect of processing on the antioxidant activity of sulphur-containing compounds, with particular reference to nickel dialkyldithiophosphates and their corresponding di sulphides, were studied in polyolefins under melt, thermal and photo-oxidative conditions. These compounds were evaluated both at low (normal) and high (concentrates) concentrations. In general, the dithiophosphates were found to be very efficient melt stabilisers at normal concentrtion levels, and compare quite favourably with the best commercially available systems. The nickel dithiophosphates were also found to be very efficient thermal stabilisers for polyolefins, but their activity is highly dependent on the alkyl substituent in the molecule. The corresponding disulphides on the other hand showed very little activity under thermal oxidative conditions, and this was attributed to their inefficiency in scavenging alkyl peroxyl radicals since both compounds possess similar peroxidolytic activity. Furthermore, the nickel dithiophosphates were found to be excellent photo stabilisers for mildly-processed polyolefins while the corresponding disulphides only offer slight protection to the polymer. Oxidative processing of the disulphide, however, results in a dramatic improvement in their photo antioxidant activity. Thionophospho-ric acid, a major oxidation product of dithiophosphates, was also shown to have photo antioxidant activity similar to that of the disulphides. A combination of a U.V. absorber with the nickel complex and/or the disulphide resulted in a synergistic stabiliser system which was further augmented by oxidative processing. Moreover, the dilute analogues of such multicomponent stabiliser concentrates also showed excellent melt, thermal and photo-stabilising activity. The mechanistic studies carried out on the nickel complex and the corresponding disulphide clearly identified the thionophosphoric acid a a major transformation product although various triesters were formed as reaction intermediates. The mechanisms of the antioxidant action of the dithiophosphates, which is believed to involve a cyclical process similar to that shown for simple alkyl sulphides and nitroxyls, are discussed.
Resumo:
The potential replacement, partially or fully, of synthetic additives by bio-based alternatives derived from indigenous renewable non-food crop resources offers a market opportunity for a green supply of raw materials for different industrial and health products, with greater involvement of the farming community in crop production while addressing the ever more stringent environmental and pollution laws that now require the use of less potentially toxic/harmful ingredients, even if they are present in relatively small quantities. The work presented here relates to developing a new genre of environmentally-sustainable bio-based antioxidants (AO) for industrial uses that are obtained from extracts of UK-grown rosemary (Rosmarinus officinalis) plant. The performance of these AOs was tested, and their efficacy compared with some common and benchmark synthetic AOs from the same chemical class, in different products including polymers especially for packaging, as well as lubricants, cosmetics and health products. One of the main active ingredients in rosemary is Rosmarinic acid which is a water-soluble compound. This was chemically transformed into a number of ester derivatives, Rosmarinates, targeted for different applications. The parent and the modified antioxidants (the rosmarinates) were characterised and their antioxidancy were examined and tested in linear low-density polyethylene (LLDPE) and in polypropylene (PP) and compared with compounds of similar structure and with other well known synthetic antioxidants used commercially in polyolefins. The results show that antioxidants sourced from rosemary have the added benefit of being highly efficient and intrinsically more active than many synthetic and bio-based alternatives.
Resumo:
Controlling the water content within a product has long been required in the chemical processing, agriculture, food storage, paper manufacturing, semiconductor, pharmaceutical and fuel industries. The limitations of water content measurement as an indicator of safety and quality are attributed to differences in the strength with which water associates with other components in the product. Water activity indicates how tightly water is "bound," structurally or chemically, in products. Water absorption introduces changes in the volume and refractive index of poly(methyl methacrylate) PMMA. Therefore for a grating made in PMMA based optical fiber, its wavelength is an indicator of water absorption and PMMA thus can be used as a water activity sensor. In this work we have investigated the performance of a PMMA based optical fiber grating as a water activity sensor in sugar solution, saline solution and Jet A-1 aviation fuel. Samples of sugar solution with sugar concentration from 0 to 8%, saline solution with concentration from 0 to 22%, and dried (10ppm), ambient (39ppm) and wet (68ppm) aviation fuels were used in experiments. The corresponding water activities are measured as 1.0 to 0.99 for sugar solution, 1.0 to 0.86 for saline solution, and 0.15, 0.57 and 1.0 for the aviation fuel samples. The water content in the measured samples ranges from 100% (pure water) to 10 ppm (dried aviation fuel). The PMMA based optical fiber grating exhibits good sensitivity and consistent response, and Bragg wavelength shifts as large as 3.4 nm when the sensor is transferred from dry fuel to wet fuel. © 2014 Copyright SPIE.