913 resultados para Polymer-based


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Makromolekulare Wirkstoffträgersysteme sind von starkem Interesse bezüglich der klinischen Anwendung chemotherapeutischer Agenzien. Um ihr klinisches Potential zu untersuchen ist es von besonderer Bedeutung das pharmakokinetische Profil in vivo zu bestimmen. Jede Veränderung der Polymerstruktur beeinflusst die Körperverteilung des entsprechenden Makromoleküls. Aufgrund dessen benötigt man detailliertes Wissen über Struktur-Eigenschaftsbeziehungen im lebenden Organismus, um das Nanocarrier System für zukünftige Anwendungen einzustellen. In dieser Beziehung stellt das präklinische Screening mittels radioaktiver Markierung und Positronen-Emissions-Tomographie eine nützliche Methode für schnelle sowie quantitative Beobachtung von Wirkstoffträgerkandidaten dar. Insbesondere poly(HPMA) und PEG sind im Arbeitsgebiet Polymer-basierter Therapeutika stark verbreitet und von ihnen abgeleitete Strukturen könnten neue Generationen in diesem Forschungsbereich bieten.rnDie vorliegende Arbeit beschreibt die erfolgreiche Synthese verschiedener HPMA und PEG basierter Polymer-Architekturen – Homopolymere, Statistische und Block copolymere – die mittels RAFT und Reaktivesterchemie durchgeführt wurde. Des Weiteren wurden die genannten Polymere mit Fluor-18 und Iod-131 radioaktiv markiert und mit Hilfe von microPET und ex vivo Biodistributionsstudien in tumortragenden Ratten biologisch evaluiert. Die Variation in Polymer-Architektur und darauffolgende Analyse in vivo resultierte in wichtige Schlussfolgerungen. Das hydrophile / lipophile Gleichgewicht hatte einen bedeutenden Einfluss auf das pharmakokinetische Profil, mit besten in vivo Eigenschaften (geringe Aufnahme in Leber und Milz sowie verlängerte Blutzirkulationszeit) für statistische HPMA-LMA copolymere mit steigendem hydrophoben Anteil. Außerdem zeigten Langzeitstudien mit Iod-131 eine verstärkte Retention von hochmolekularen, HPMA basierten statistischen Copolymeren im Tumorgewebe. Diese Beobachtung bestätigte den bekannten EPR-Effekt. Hinzukommend stellen Überstrukturbildung und damit Polymergröße Schlüsselfaktoren für effizientes Tumor-Targeting dar, da Polymerstrukturen über 200 nm in Durchmesser schnell vom MPS erkannt und vom Blutkreislauf eliminiert werden. Aufgrund dessen wurden die hier synthetisierten HPMA Block copolymere mit PEG Seitengruppen chemisch modifiziert, um eine Verminderung in Größe sowie eine Reduktion in Blutausscheidung zu induzieren. Dieser Ansatz führte zu einer erhöhten Tumoranreicherung im Walker 256 Karzinom Modell. Generell wird die Körperverteilung von HPMA und PEG basierten Polymeren stark durch die Polymer-Architektur sowie das Molekulargewicht beeinflusst. Außerdem hängt ihre Effizienz hinsichtlich Tumorbehandlung deutlich von den individuellen Charakteristika des einzelnen Tumors ab. Aufgrund dieser Beobachtungen betont die hier vorgestellte Dissertation die Notwendigkeit einer detaillierten Polymer-Charakterisierung, kombiniert mit präklinischem Screening, um polymere Wirkstoffträgersysteme für individualisierte Patienten-Therapie in der Zukunft maßzuschneidern.rn

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Several adverse consequences are caused by mild perioperative hypothermia. Maintaining normothermia with patient warming systems, today mostly with forced air (FA), has thus become a standard procedure during anesthesia. Recently, a polymer-based resistive patient warming system was developed. We compared the efficacy of a widely distributed FA system with the resistive-polymer (RP) system in a prospective, randomized clinical study. METHODS: Eighty patients scheduled for orthopedic surgery were randomized to either FA warming (Bair Hugger warming blanket #522 and blower #750, Arizant, Eden Prairie, MN) or RP warming (Hot Dog Multi-Position Blanket and Hot Dog controller, Augustine Biomedical, Eden Prairie, MN). Core temperature, skin temperature (head, upper and lower arm, chest, abdomen, back, thigh, and calf), and room temperature (general and near the patient) were recorded continuously. RESULTS: After an initial decrease, core temperatures increased in both groups at comparable rates (FA: 0.33 degrees C/h +/- 0.34 degrees C/h; RP: 0.29 degrees C/h +/- 0.35 degrees C/h; P = 0.6). There was also no difference in the course of mean skin and mean body (core) temperature. FA warming increased the environment close to the patient (the workplace of anesthesiologists and surgeons) more than RP warming (24.4 degrees C +/- 5.2 degrees C for FA vs 22.6 degrees C +/- 1.9 degrees C for RP at 30 minutes; P(AUC) <0.01). CONCLUSION: RP warming performed as efficiently as FA warming in patients undergoing orthopedic surgery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background The effectiveness of durable polymer drug-eluting stents comes at the expense of delayed arterial healing and subsequent late adverse events such as stent thrombosis (ST). We report the 4 year follow-up of an assessment of biodegradable polymer-based drug-eluting stents, which aim to improve safety by avoiding the persistent inflammatory stimulus of durable polymers. Methods We did a multicentre, assessor-masked, non-inferiority trial. Between Nov 27, 2006, and May 18, 2007, patients aged 18 years or older with coronary artery disease were randomly allocated with a computer-generated sequence to receive either biodegradable polymer biolimus-eluting stents (BES) or durable polymer sirolimus-eluting stents (SES; 1:1 ratio). The primary endpoint was a composite of cardiac death, myocardial infarction, or clinically-indicated target vessel revascularisation (TVR); patients were followed-up for 4 years. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00389220. Findings 1707 patients with 2472 lesions were randomly allocated to receive either biodegradable polymer BES (857 patients, 1257 lesions) or durable polymer SES (850 patients, 1215 lesions). At 4 years, biodegradable polymer BES were non-inferior to durable polymer SES for the primary endpoint: 160 (18·7%) patients versus 192 (22·6%) patients (rate ratios [RR] 0·81, 95% CI 0·66–1·00, p for non-inferiority <0·0001, p for superiority=0·050). The RR of definite ST was 0·62 (0·35–1·08, p=0·09), which was largely attributable to a lower risk of very late definite ST between years 1 and 4 in the BES group than in the SES group (RR 0·20, 95% CI 0·06–0·67, p=0·004). Conversely, the RR of definite ST during the first year was 0·99 (0·51–1·95; p=0·98) and the test for interaction between RR of definite ST and time was positive (pinteraction=0·017). We recorded an interaction with time for events associated with ST but not for other events. For primary endpoint events associated with ST, the RR was 0·86 (0·41–1·80) during the first year and 0·17 (0·04–0·78) during subsequent years (pinteraction=0·049). Interpretation Biodegradable polymer BES are non-inferior to durable polymer SES and, by reducing the risk of cardiac events associated with very late ST, might improve long-term clinical outcomes for up to 4 years compared with durable polymer SES. Funding Biosensors Europe SA, Switzerland.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Mild perioperative hypothermia increases the risk of several severe complications. Perioperative patient warming to preserve normothermia has thus become routine, with forced-air warming being used most often. In previous studies, various resistive warming systems have shown mixed results in comparison with forced-air. Recently, a polymer-based resistive patient warming system has been developed. We compared the efficacy of a standard forced-air warming system with the resistive polymer system in volunteers. METHODS: Eight healthy volunteers participated, each on two separate study days. Unanesthetized volunteers were cooled to a core temperature (tympanic membrane) of 34 degrees C by application of forced-air at 10 degrees C and a circulating-water mattress at 4 degrees C. Meperidine and buspirone were administered to prevent shivering. In a randomly designated order, volunteers were then rewarmed (until their core temperatures reached 36 degrees C) with one of the following active warming systems: (1) forced-air warming (Bair Hugger warming cover #300, blower #750, Arizant, Eden Prairie, MN); or (2) polymer fiber resistive warming (HotDog whole body blanket, HotDog standard controller, Augustine Biomedical, Eden Prairie, MN). The alternate system was used on the second study day. Metabolic heat production, cutaneous heat loss, and core temperature were measured. RESULTS: Metabolic heat production and cutaneous heat loss were similar with each system. After a 30-min delay, core temperature increased nearly linearly by 0.98 (95% confidence interval 0.91-1.04) degrees C/h with forced-air and by 0.92 (0.85-1.00) degrees C/h with resistive heating (P = 0.4). CONCLUSIONS: Heating efficacy and core rewarming rates were similar with full-body forced-air and full-body resistive polymer heating in healthy volunteers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background Biodegradable polymers for release of antiproliferative drugs from metallic drug-eluting stents (DES) aim to improve long-term vascular healing and efficacy. We designed a large scale clinical trial to compare a novel thin strut, cobalt chromium DES with silicon carbide coating releasing sirolimus from a biodegradable polymer (Orsiro, O-SES) with the durable polymer-based Xience Prime everolimus-eluting stent (X-EES) in an all-comers patient population. Design The multicenter BIOSCIENCE trial (NCT01443104) randomly assigned 2,119 patients to treatment with biodegradable polymer SES or durable polymer EES at 9 sites in Switzerland. Patients with chronic stable coronary artery disease or acute coronary syndromes, including non-ST-elevation and ST-elevation myocardial infarction, were eligible for the trial if they had at least one lesion with a diameter stenosis >50% appropriate for coronary stent implantation. The primary endpoint target lesion failure (TLF) is a composite of cardiac death, target-vessel myocardial infarction, and clinically-driven target lesion revascularization within 12 months. Assuming a TLF rate of 8% at 12 months in both treatment arms and accepting 3.5% as a margin for non-inferiority, inclusion of 2,060 patients would provide 80% power to detect non-inferiority of the biodegradable polymer SES compared with the durable polymer EES at a one-sided type I error of 0.05. Clinical follow-up will be continued through five years. Conclusion The BIOSCIENCE trial will determine whether the biodegradable polymer SES is non-inferior to the durable polymer EES with respect to TLF.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Biodegradable polymers for release of antiproliferative drugs from drug-eluting stents aim to improve vascular healing. We assessed noninferiority of a novel ultrathin strut drug-eluting stent releasing sirolimus from a biodegradable polymer (Orsiro, O-SES) compared with the durable polymer Xience Prime everolimus-eluting stent (X-EES) in terms of the primary end point in-stent late lumen loss at 9 months. METHODS AND RESULTS A total of 452 patients were randomly assigned 2:1 to treatment with O-SES (298 patients, 332 lesions) or X-EES (154 patients, 173 lesions) in a multicenter, noninferiority trial. The primary end point was in-stent late loss at 9 months. O-SES was noninferior to X-EES for the primary end point (0.10±0.32 versus 0.11±0.29 mm; difference=0.00063 mm; 95% confidence interval, -0.06 to 0.07; Pnoninferiority<0.0001). Clinical outcome showed similar rates of target-lesion failure at 1 year (O-SES 6.5% versus X-EES 8.0%; hazard ratio=0.82; 95% confidence interval, 0.40-1.68; log-rank test: P=0.58) without cases of stent thrombosis. A subgroup of patients (n=55) underwent serial optical coherence tomography at 9 months, which demonstrated similar neointimal thickness among lesions allocated to O-SES and X-EES (0.10±0.04 mm versus 0.11±0.04 mm; -0.01 [-0.04, -0.01]; P=0.37). Another subgroup of patients (n=56) underwent serial intravascular ultrasound at baseline and 9 months indicating a potential difference in neointimal area at follow-up (O-SES, 0.16±0.33 mm(2) versus X-EES, 0.43±0.56 mm(2); P=0.04). CONCLUSIONS Compared with durable polymer X-EES, novel biodegradable polymer-based O-SES was found noninferior for the primary end point in-stent late lumen loss at 9 months. Clinical event rates were comparable without cases of stent thrombosis throughout 1 year of follow-up. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT01356888.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIMS The Absorb bioresorbable vascular scaffold (Absorb BVS) provides similar clinical outcomes compared with a durable polymer-based everolimus-eluting metallic stent (EES) in stable coronary artery disease patients. ST-elevation myocardial infarction (STEMI) lesions have been associated with delayed arterial healing and impaired stent-related outcomes. The purpose of the present study is to compare directly the arterial healing response, angiographic efficacy and clinical outcomes between the Absorb BVS and metallic EES. METHODS AND RESULTS A total of 191 patients with acute STEMI were randomly allocated to treatment with the Absorb BVS or a metallic EES 1:1. The primary endpoint is the neointimal healing (NIH) score, which is calculated based on a score taking into consideration the presence of uncovered and malapposed stent struts, intraluminal filling defects and excessive neointimal proliferation, as detected by optical frequency domain imaging (OFDI) six months after the index procedure. The study will provide 90% power to show non-inferiority of the Absorb BVS compared with the EES. CONCLUSIONS This will be the first randomised study investigating the arterial healing response following implantation of the Absorb BVS compared with the EES. The healing response assessed by a novel NIH score in conjunction with results on angiographic efficacy parameters and device-oriented events will elucidate disease-specific applications of bioresorbable scaffolds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work has used novel polymer design and fabrication technology to generate bead form polymer based systems, with variable, yet controlled release properties, specifically for the delivery of macromolecules, essentially peptides of therapeutic interest. The work involved investigation of the potential interaction between matrix ultrastructural morphology, in vitro release kinetics, bioactivity and immunoreactivity of selected macromolecules with limited hydrolytic stability, delivered from controlled release vehicles. The underlying principle involved photo-polymerisation of the monomer, hydroxyethyl methacrylate, around frozen ice crystals, leading to the production of a macroporous hydrophilic matrix. Bead form matrices were fabricated in controllable size ranges in the region of 100µm - 3mm in diameter. The initial stages of the project involved the study of how variables, delivery speed of the monomer and stirring speed of the non solvent, affectedthe formation of macroporous bead form matrices. From this an optimal bench system for bead production was developed. Careful selection of monomer, solvents, crosslinking agent and polymerisation conditions led to a variable but controllable distribution of pore sizes (0.5 - 4µm). Release of surrogate macromolecules, bovine serum albumin and FITC-linked dextrans, enabled factors relating to the size and solubility of the macromolecule on the rate of release to be studied. Incorporation of bioactive macromolecules allowed retained bioactivity to be determined (glucose oxidase and interleukin-2), whilst the release of insulin enabled determination of both bioactivity (using rat epididymal fat pad) and immunoreactivity (RIA). The work carried out has led to the generation of macroporous bead form matrices, fabricated from a tissue biocompatible hydrogel, capable of the sustained, controlled release of biologically active peptides, with potential use in the pharmaceutical and agrochemical industries.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We review the state-of-the-art in photonic crystal fiber (PCF) and microstructured polymer optical fiber (mPOF) based mechanical sensing. We first introduce how the unique properties of PCF can benefit Bragg grating based temperature insensitive pressure and transverse load sensing. Then we describe how the latest developments in mPOF Bragg grating technology can enhance optical fiber pressure sensing. Finally we explain how the integration of specialty fiber sensor technology with bio-compatible polymer based micro-technology provides great opportunities for fiber sensors in the field of healthcare.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vaccines remain a key tool in the defence against major diseases. However, in the development of vaccines a trade off between safety and efficacy is required with newer vaccines, based on sub-unit proteins and peptides, displaying improved safety profiles yet suffering from low efficacy. Adjuvants can be employed to improve their potency, but currently there are only a limited number of adjuvant systems licensed for clinical use. Of the new adjuvants being investigated, particulate systems offer several advantages including: passive targeting to the antigen-presenting cells within the immune system, protection against adjuvant degradation, and ability for sustained antigen release. There has been a range of particulate vaccine delivery systems outlined in recent patents including polymer-based microspheres (which are generally more focused on the use of synthetic polymers, in particular the polyesters) and surfactant-based vesicles. Within these formulations, several patented systems are exploiting the use of cationic lipids which, despite their limitations in gene therapy, clearly offer strong potential as adjuvants. Within this review, the current range of particulate system technologies being investigated as potential adjuvants are discussed with regard to both their respective advantages and the potential hurdles which must be overcome for such systems to be converted into successful pharmaceutical products.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis describes the production of advanced materials comprising a wide array of polymer-based building blocks. These materials include bio-hybrid polymer-peptide conjugates, based on phenylalanine and poly(ethylene oxide), and polymers with intrinsic microporosity (PIMs). Polymer-peptides conjugates were previously synthesised using click chemistry. Due to the inherent disadvantages of the reported synthesis, a new, simpler, inexpensive protocol was sought. Three synthetic methods based on amidation chemistry were investigated for both oligopeptide and polymerpeptide coupling. The resulting conjugates produced were then assessed by various analytical techniques, and the new synthesis was compared with the established protocol. An investigation was also carried out focussing on polymer-peptide coupling via ester chemistry, involving deprotection of the carboxyl terminus of the peptide. Polymer-peptide conjugates were also assessed for their propensity to self-assemble into thixotropic gels in an array of solvent mixtures. Determination of the rules governing this particular self-assembly (gelation) was required. Initial work suggested that at least four phenylalanine peptide units were necessary for self-assembly, due to favourable hydrogen bond interactions. Quantitative analysis was carried out using three analytical techniques (namely rheology, FTIR, and confocal microscopy) to probe the microstructure of the material and provided further information on the conditions for self-assembly. Several polymers were electrospun in order to produce nanofibres. These included novel materials such as PIMs and the aforementioned bio-hybrid conjugates. An investigation of the parameters governing successful fibre production was carried out for PIMs, polymer-peptide conjugates, and for nanoparticle cages coupled to a polymer scaffold. SEM analysis was carried out on all material produced during these electrospinning experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We review the state-of-the-art in photonic crystal fiber (PCF) and microstructured polymer optical fiber (mPOF) based mechanical sensing. We first introduce how the unique properties of PCF can benefit Bragg grating based temperature insensitive pressure and transverse load sensing. Then we describe how the latest developments in mPOF Bragg grating technology can enhance optical fiber pressure sensing. Finally we explain how the integration of specialty fiber sensor technology with bio-compatible polymer based micro-technology provides great opportunities for fiber sensors in the field of healthcare.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a rheological investigation of pure gypsum (PG) and a commercial gypsum-lime-filler plaster (CP) using the modified Vicat apparatus and squeeze flow method. The samples were tested at several different intervals after manual or mechanical mixing. The results confirmed squeeze flow to be more sensitive in determining fresh paste behavior than the modified Vicat apparatus. PG set faster when prepared in mechanical mixer than when manually mixed. Conversely, the CP composition presented longer setting when mixed mechanically. The study also included the analysis of two ready-to-use polymer-based products for leveling and rendering (drywall joint compound - DJC; acrylic putty - AP) measured by squeeze flow and compared to the commercial composition. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A polymer based on a blend of starch and Bionolle(TM) has been prepared and tested for biodegradation in compost. The polymer was completely mineralised to carbon dioxide in 45 days. The potential toxicity of the polymer was tested against the earthworm Eisenia fetida using a modification of the American Standard for Testing Materials E1976-97. The earthworms were exposed to 30 g of the polymer for 28 days and changes in weight recorded. In addition, the polymer was firstly degraded by the compost and the worms exposed to the breakdown products for 28 days. Differences in weight were also recorded. In each case the production of juveniles was noted and all earthworms were examined for pathology. The results obtained were processed statistically using a t-test. The number of juveniles, produced from the breakdown products, was highly significant (P < 0.001) when compared to the earthworms added to the intact polymer. There was a definitely significant difference (P < 0.01, t = 3.25) in change in weight between the earthworms that were exposed to the polymer directly and those that were exposed to the breakdown products. There was no indication of any pathology of any earthworms. The polymer is considered safe for this species. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of the dispersion of vapor grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/epoxy composites has been studied. A homogeneous dispersion of the VGCNF does not imply better electrical properties. The presence of well distributed clusters appears to be a key factor for increasing composite conductivity. It is also shown that the main conduction mechanism has an ionic nature for concentrations below the percolation threshold, while above the percolation threshold it is dominated by hopping between the fillers. Finally, using the granular system theory it is possible to explain the origin of conduction at low temperatures.