933 resultados para Polymer Molecular-crowding Effects
Resumo:
The photoluminescence features and the energy transfer processes of Nd3+-based siloxanepoly(oxyethylene) hybrids are reported. The host matrix of these materials, classed as di-ureasils, is formed by a siloxane backbone covalently bonded to polyether chains of two molecular weights by means of urea cross-links. The room-temperature photoluminescence spectra of these xerogels show a wide broad purple-blue-green band (350-570 nm), associated with the emitting centres of the di-ureasil host, and the typical near infrared emission of Nd3+ (700-1400 nm), assigned to the 4F3/2 → 4I9/2,11/2,13/2 transitions. Self-absorptions in the visible range, resonant with intra-4f3 transitions, indicate the existence of an energy conversion mechanism of visible di-ureasil emission into near infrared Nd3+ luminescence. The existence of energy transfer between the di-ureasil's emitting centres and the Nd3+ ions is demonstrated calculating the lifetimes of these emitting centres. The efficiency of that energy transfer changes both with the polymer molecular weight and the Nd3+ concentration.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We aimed to investigate the possible role of creatine (CR) supplementation in counteracting dexamethasone-induced muscle wasting and insulin resistance in rats. Also, we examined whether CR intake would modulate molecular pathways involved in muscle remodeling and insulin signaling. Animals were randomly divided into four groups: (1) dexamethasone (DEX); (2) control pair-fed (CON-PF); (3) dexamethasone plus CR (DEX-CR); and (4) CR pair-fed (CR-PF). Dexamethasone (5 mg/kg/day) and CR (5 g/kg/day) were given via drinking water for 7 days. Plantaris and extensor digitorum longus (EDL) muscles were removed for analysis. Plantaris and EDL muscle mass were significantly reduced in the DEX-CR and DEX groups when compared with the CON-PF and CR-PF groups (P < 0.05). Dexamethasone significantly decreased phospho-Ser(473)-Akt protein levels compared to the CON-PF group (P < 0.05) and CR supplementation aggravated this response (P < 0.001). Serum glucose was significantly increased in the DEX group when compared with the CON-PF group (DEX 7.8 +/- A 0.6 vs. CON-PF 5.2 +/- A 0.5 mmol/l; P < 0.05). CR supplementation significantly exacerbated hyperglycemia in the dexamethasone-treated animals (DEX-CR 15.1 +/- A 2.4 mmol/l; P < 0.05 vs. others). Dexamethasone reduced GLUT-4 translocation when compared with the CON-PF and CR-PF (P < 0.05) groups and this response was aggravated by CR supplementation (P < 0.05 vs. others). In conclusion, supplementation with CR resulted in increased insulin resistance and did not attenuate muscle wasting in rats treated with dexamethasone. Given the contrast with the results of human studies that have shown benefits of CR supplementation on muscle atrophy and insulin sensitivity, we suggest caution when extrapolating this animal data to human subjects.
Resumo:
The colloidal stability of poly(ethylene glycol)-decorated poly(methyl methacrylate), PMMA/Tween-20, particles was investigated by means of phase separation measurements, in the presence of sodium fluoride (NaF), sodium chloride, sodium bromide, sodium nitrate, or sodium thiocyanate (NaSCN) at 1.0 mol L-1. Following Hofmeister's series, the dispersions of PMMA/Tween-20 destabilized faster in the presence of NaF than with NaSCN. After the phase separation, the systems were homogenized and except for the dispersions in NaF, re-dispersed particles took longer to destabilize, indicating that anions adsorbed on the particles, creating a new surface. Except for F- ions, the adsorption of anions on the polar outmost shell was evidenced by means of tensiometry and small-angle X-ray scattering measurements. Fluoride ions induced the dehydration of the polar shell, without affecting the polar shell electron density, and the formation of very large aggregates. A model was proposed to explain the colloidal behavior in the presence of Hofmeister ions.
Resumo:
In this paper, we present the Cellular Dynamic Simulator (CDS) for simulating diffusion and chemical reactions within crowded molecular environments. CDS is based on a novel event driven algorithm specifically designed for precise calculation of the timing of collisions, reactions and other events for each individual molecule in the environment. Generic mesh based compartments allow the creation / importation of very simple or detailed cellular structures that exist in a 3D environment. Multiple levels of compartments and static obstacles can be used to create a dense environment to mimic cellular boundaries and the intracellular space. The CDS algorithm takes into account volume exclusion and molecular crowding that may impact signaling cascades in small sub-cellular compartments such as dendritic spines. With the CDS, we can simulate simple enzyme reactions; aggregation, channel transport, as well as highly complicated chemical reaction networks of both freely diffusing and membrane bound multi-protein complexes. Components of the CDS are generally defined such that the simulator can be applied to a wide range of environments in terms of scale and level of detail. Through an initialization GUI, a simple simulation environment can be created and populated within minutes yet is powerful enough to design complex 3D cellular architecture. The initialization tool allows visual confirmation of the environment construction prior to execution by the simulator. This paper describes the CDS algorithm, design implementation, and provides an overview of the types of features available and the utility of those features are highlighted in demonstrations.
Resumo:
The proteasome degrades approximately 80% of intracellular proteins to maintain homeostasis. Proteasome inhibition is a validated therapeutic strategy, and currently, proteasome inhibitor bortezomib is FDA approved for the treatment of MM and MCL. Specific pathways affected by proteasome inhibition have been identified, but mechanisms of the anti-tumor effects of proteasome inhibition are not fully characterized and cancer cells display marked heterogeneity in terms of their sensitivity to proteasome inhibitor induced cell death. ^ The antitumor effects of proteasome inhibition involve suppression of tumor angiogenesis and vascular endothelial growth factor (VEGF) expression, but the mechanisms involved have not been clarified. In this dissertation I investigated the mechanisms underlying the effects of two proteasome inhibitors, bortezomib and NPI-0052, on VEGF expression in human prostate cancer cells. I found that proteasome inhibitors selectively downregulated hypoxia inducible factor 1alpha (HIF-1α) protein and its transcriptional activity to inhibit VEGF expression. Mechanistic studies demonstrated that proteasome inhibitors mediate the induction of the unfolded protein response (UPR) and that downregulation of HIF-1α is caused by eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and translation repression. Importantly, I showed that proteasome inhibitors activated the UPR in some cells but not in others. My observation may have implications for the design of combination regimens that are based on exploiting proteasome inhibitor-induced ER stress.^ Although proteasome inhibitors have shown modest activity on prostate cancer, there is general consensus that no single agent is likely to have significant activity in prostate cancer. In the second part of this dissertation I attempted to exploit the effects of proteasome inhibition on the UPR to design a combination therapy that would enhance cancer cell death. Autophagy is a lysosome dependent degradation pathway that functions to eliminate long-lived protein and subcellular structures. Targeting autophagy has been shown to inhibit tumors in preclinical studies. I found that inhibition of autophagy with chloroquine or 3-methyladenine enhanced proteasome inhibitor induced cell death and the effects were associated with increased intracellular stress as marked by aggresome formation. Multiple cancers appear to be resistant to proteasome inhibition treatment alone. The implications of synergy for the combined inhibition of autophagy and the proteasome would likely apply to other cancers aside from prostate cancer. ^
Resumo:
The effect of DNA cytosine methylation on H-ras promoter activity was assessed using a transient expression system employing the plasmid H-rasCAT (NaeI H-ras promoter linked to the chloramphenicol acetyltransferase (CAT) gene). This 551 bp promoter is 80% GC rich, enriched with 168 CpG dinucleotides, and contains six functional GC box elements which represent major DNA methylation target sites. Prokaryotic methyltransferases HhaI (CGm$\sp5$CG) and HpaII (Cm$\sp5$CGG) alone or in combination with a human placental methyltransferase (HP MTase) were used to introduce methyl groups at different CpG sites within the promoter. To test for functional promoter activity, the methylated plasmids were introduced into CV-1 cells and CAT activity assessed 48 h post-transfection. Methylation at specific HhaI and HpaII sites reduced CAT expression by 70%, whereas more extensive methylation at generalized CpG sites with HP MTase inactivated the promoter $>$95%. The inhibition of H-ras promoter activity was not attributable to methylation-induced differences in DNA uptake or stability in the cell, topological form of the plasmid, or methylation effects in nonpromoter regions. We also observed that DNA cytosine methylation of a 360 bp promoter fragment by HP MTase induced a local change in DNA conformation. Using three independent methodologies (nitrocellulose filter binding assays, gel mobility shifts, and Southwestern blots), we determined that this change in promoter conformation affected the interaction of nuclear proteins with cis-regulatory sequences residing in the promoter region. The results provide evidence to suggest that DNA methylation may regulate gene expression by inducing changes in local promoter conformation which in turn alters the interactions between DNA and protein factors required for transcription. The results provide supportive evidence for the hypothesis of Cedar and Riggs, who postulated that DNA methylation may regulate gene expression by altering the binding affinities of proteins for DNA. ^
Resumo:
The effect of three osmolytes, trimethylamine N-oxide (TMAO), betaine and proline, on the interaction of muscle glycogen phosphorylase b with allosteric inhibitor FAD has been examined. In the absence of osmolyte, the interaction is described by a single intrinsic dissociation constant (17.8 muM) for two equivalent and independent binding sites on the dimeric enzyme. However, the addition of osmolytes gives rise to sigmoidal dependencies of fractional enzyme-site saturation upon free inhibitor concentration. The source of this cooperativity has been shown by difference sedimentation velocity to be an osmolyte-mediated isomerization of phosphorylase b to a smaller dimeric state with decreased affinity for FAD. These results thus have substantiated a previous inference that the tendency for osmolyte-enhanced self-association of dimeric glycogen phosphorylase b in the presence of AMP was being countered by the corresponding effect of molecular crowding on an isomerization of dimer to a smaller, nonassociating state. (C) 2004 Elsevier Ltd. Inc. All rights reserved.
Resumo:
The aim of this research project was to identify the factors affecting the porcine pancreatic lipase (PPL.)-catalysed polytransesterification of a diester and a diol in organic solvents. It was hoped that by modifying reaction conditions a commercially acceptable polymer molecular weight (Mn) of 20,000 daltons might be attained. Exploratory investigations were carried out using 1,4-butanediolibis(2,2,2- trichloroethyl) adipate and glutarate systems in diethyl ether, with and without molecular sieves. It was found that molecular sieves promoted the reaction by reducing hydrolysis of the ester end-groups, resulting in polymer molecular weights between 1.2 and 2.2 times greater than those obtainable without molecular sieves. Investigations were then concentrated on the PPL-catalysed polytransesterification of 1,4-butanediol with divinyl adipate. The particular advantage of this system is that the reaction is irreversible. The effects of varying substrate concentration, mass of drying agent, reaction solvent, reaction temperature, mass of enzyme and also enzyme immobilisation on the 1,4-butanediolidivinyl adipate system were investigated. The highest molecular weight polymer obtained for the PPL-catalysed polytransesterification of 1,4-butanedial with divinyl adipate in diethyl ether was Mn -8,000. In higher boiling ether solvents molecular weights as high as Mn -9,200 were obtained for this system at elevated temperatures. It was found that the major factor limiting polymerisation was the low solubility of the polymer in the solvent which resulted in precipitation of the polymer onto the surface of the enzyme.
Resumo:
Cell invasion involves a population of cells that migrate along a substrate and proliferate to a carrying capacity density. These two processes, combined, lead to invasion fronts that move into unoccupied tissues. Traditional modelling approaches based on reaction–diffusion equations cannot incorporate individual–level observations of cell velocity, as information propagates with infinite velocity according to these parabolic models. In contrast, velocity jump processes allow us to explicitly incorporate individual–level observations of cell velocity, thus providing an alternative framework for modelling cell invasion. Here, we introduce proliferation into a standard velocity–jump process and show that the standard model does not support invasion fronts. Instead, we find that crowding effects must be explicitly incorporated into a proliferative velocity–jump process before invasion fronts can be observed. Our observations are supported by numerical and analytical solutions of a novel coupled system of partial differential equations, including travelling wave solutions, and associated random walk simulations.
Resumo:
Production of nanofibrous polyacrylonitrile/calcium carbonate (PAN/CaCO3) nanocomposite web was carried out through solution electrospinning process. Pore generating nanoparticles were leached from the PAN matrices in hydrochloric acid bath with the purpose of producing an ultimate nanoporous structure. The possible interaction between CaCO3 nanoparticles and PAN functional groups was investigated. Atomic absorption method was used to measure the amount of extracted CaCO3 nanoparticles. Morphological observation showed nanofibers of 270–720 nm in diameter containing nanopores of 50–130 nm. Monitoring the governing parameters statistically, it was found that the amount of extraction (ε) of CaCO3was increased when the web surface area (a) was broadened according to a simple scaling law (ε = 3.18 a0.4). The leaching process was maximized in the presence of 5% v/v of acid in the extraction bath and 5 wt % of CaCO3 in the polymer solution. Collateral effects of the extraction time and temperature showed exponential growth within a favorable extremum at 50°C for 72 h. Concentration of dimethylformamide as the solvent had no significant impact on the extraction level.
Resumo:
Invasion waves of cells play an important role in development, disease and repair. Standard discrete models of such processes typically involve simulating cell motility, cell proliferation and cell-to-cell crowding effects in a lattice-based framework. The continuum-limit description is often given by a reaction–diffusion equation that is related to the Fisher–Kolmogorov equation. One of the limitations of a standard lattice-based approach is that real cells move and proliferate in continuous space and are not restricted to a predefined lattice structure. We present a lattice-free model of cell motility and proliferation, with cell-to-cell crowding effects, and we use the model to replicate invasion wave-type behaviour. The continuum-limit description of the discrete model is a reaction–diffusion equation with a proliferation term that is different from lattice-based models. Comparing lattice based and lattice-free simulations indicates that both models lead to invasion fronts that are similar at the leading edge, where the cell density is low. Conversely, the two models make different predictions in the high density region of the domain, well behind the leading edge. We analyse the continuum-limit description of the lattice based and lattice-free models to show that both give rise to invasion wave type solutions that move with the same speed but have very different shapes. We explore the significance of these differences by calibrating the parameters in the standard Fisher–Kolmogorov equation using data from the lattice-free model. We conclude that estimating parameters using this kind of standard procedure can produce misleading results.
Resumo:
The present article gives an overview of the reversible addition fragmentation chain transfer (RAFT) process. RAFT is one of the most versatile living radical polymerization systems and yields polymers of predictable chain length and narrow molecular weight distribution. RAFT relies on the rapid exchange of thiocarbonyl thio groups between growing polymeric chains. The key strengths of the RAFT process for polymer design are its high tolerance of monomer functionality and reaction conditions, the wide range of well-controlled polymeric architectures achievable, and its (in-principle) non-rate-retarding nature. This article introduces the mechanism of polymerization, the range of polymer molecular weights achievable, the range of monomers in which polymerization is controlled by RAFT, the various polymeric architectures that can be obtained, the type of end-group functionalities available to RAFT-made polymers, and the process of RAFT polymerization.
Resumo:
Diffusive transport is a universal phenomenon, throughout both biological and physical sciences, and models of diffusion are routinely used to interrogate diffusion-driven processes. However, most models neglect to take into account the role of volume exclusion, which can significantly alter diffusive transport, particularly within biological systems where the diffusing particles might occupy a significant fraction of the available space. In this work we use a random walk approach to provide a means to reconcile models that incorporate crowding effects on different spatial scales. Our work demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume can be used in many circumstances, but that care must be taken in pushing the coarse-graining process too far.
Resumo:
At the heart of understanding cellular processes lies our ability to explore the specific nature of communication between sequential information carrying biopolymers. However, the data extracted from conventional solution phase studies may not reflect the dynamics of communication between recognized partners as they occur in the crowded cellular milieu. We use the principle of immobilization of histidine-tagged biopolymers at a Ni(II)-encoded Langmuir monolayer to study sequence-specific protein-protein interactions in an artificially crowded environment The advantage of this technique lies in increasing the surface density of one of the interacting partners that allows us to study macromolecular interactions in a controlled crowded environment, but without compromising the speed of the reactions. We have taken advantage of this technique to follow the sequential assembly process of the multiprotein complex Escherichia coil RNA polymerase at the interface and also deciphered the role of one of the proteins, omega (omega), in the assembly pathway. Our reconstitution studies indicate that in the absence of molecular chaperones or other cofactors, omega (omega) plays a decisive role in refolding the largest protein beta prime (beta') and its recruitment into the multimeric assembly to reconstitute an active RNA polymerase. It was also observed that the monolayer had the ability to distinguish between sequence-specific and -nonspecific interactions despite the immobilization of one of the biomacromolecules. The technique provides a universal two-dimensional template for studying protein-ligand interactions while mimicking molecular crowding.