126 resultados para Polyimides
Resumo:
2,2'-Bis(3,4-dicarboxyphenoxy)-1,1'-binaphthyl dianhydride was used as a new monomer with various aromatic diamines to obtain polyimides by the usual two-step method. The bis(ether anhydride) was prepared by a nucleophilic substitution of I,1'-bi-2-naphthol with N-phenyl-4-chlorophthalimide, N-methyl-4-nitrophthalimide or 4-nitrophthalonitrile in aprotic polar solvent, and subsequent hydrolysis of the resulting bis(ether imide)s or bis(ether dinitrile), and then dehydration of the corresponding tetracarboxylic acid to afford the dianhydride. Most of the obtained polyimides were soluble in chloroform, pyridine, DMF, etc. The polyimide prepared from p-phenylene diamine was partial crystalline, whereas the others showed amorphous patterns in a WAXD study. These polymers have glass transition temperatures between 255-294 degrees C and 5% weight loss temperatures in the range of 502-541 degrees C in nitrogen and 473-537 degrees C in air. (C) 1997 Elsevier Science Ltd.
Resumo:
New alicyclic Polyimides (PIs) were prepared from asymmetric alicyclic dianhydride, 5-(2,5-dioxotetrahydrofuryl)-3-methyl-cyclohexane-1,2-dicarboxylic anhydride (DOCDA) and the corresponding aromatic diamines such as p-phenylenediamine, m-phenylenediamine and oxydianiline etc. by the polycondensation in N-methyl-2-pyrrolidone (NMP) followed by chemical imidization as well as one step polyimidization in m-cresol in the presence of isoquinoline as a catalyst. The resulting PIs with glass transition temperatures ranging from 220 to 328 degrees C had the inherent viscosities within the range of 0.25 similar to 1.42 dL/g. These polymers were readily soluble in aprotic polar solvents such as NMP, dimethylacetamide (DMAc), dimethylesulfoxide (DMSO), etc. Furthermore, some of the polymers showed good solubility properties to common organic solvents like tetrahydrofurane and chlorform. Also, all of these polyimide films were tough, almost colourless, and transparent.
Resumo:
Two soluble high-performance polyimides, poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA), in CHCl3 at 25 degrees C have been studied using laser light scattering. We found that the z-average radius of gyration ([R(g)]) can be scaled to the weight-average molecular weight (M(w)) as [R(g)] (nm) = 4.95 x 10(-2)M(w)(0.52) and [R(g)] (nm) = 1.25 x 10(-2)M(w)(0.66) respectively for poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA), indicating that poly(ODPA/DMMDA) in CHCl3 at 25 degrees C has a more extended chain conformation than poly(BCPOBDA/DMMDA). Using the wormlike chain model approach, we found that the Flory characteristic ratios (C*) of poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA) are similar to 20 and similar to 31, respectively, indicating that both of them have a slightly extended chain conformation in comparison with typical flexible polymer chains, such as polystyrene, whose C-infinity is similar to 10. A combination of the weight-average molar mass (M(w)) with the translational diffusion coefficient distributions (G(D)) has led to D (cm(2)/s) = 3.53 x 10(-4)M(-0.579) and D (cm(2)/s) = 4.30 x 10(-4)M(-0.613) respectively for two soluble high-performance polyimides, poly(BCPOBDA/DMMDA) and poly(ODPA/DMMTA), in CHCl3 at 25 degrees C. Using these two calibrations, we have successfully characterized the molar mass distributions of the two polyimides from their corresponding G(D)s. The exponents of these two calibrations further confirm that both of the polyimides have a slightly extended coil chain conformation in CHCl3. The chain flexibility difference between these two polyimides has also been discussed.
Resumo:
The gas permeability and permselectivity properties were investigated of polyimides, prepared from 3,3',4,4'- and 2,2',3,3'-thiaphthalic dianhydride (p-TDPA and m-TDPA, respectively), or 1,4-bis(3,4-dicarboxyphenoxy)- and 1,4-bis(2,3-dicarboxyphenoxy) benzene dianhydride (p-HQDPA and m-HQDPA, respectively), and 4,4-oxydianiline. The polyimides prepared from meta-dianhydrides, which have lower chain-segment packing density, possess higher permeability and lower permselectivity than those prepared from para-dianhydrides. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Permeability coefficients of H-2, O-2, and N2 were measured under 10 atm at the temperature from ambient temperature up to 150 degrees C in a series of structurally different aromatic homo- and copolyimides, which were prepared from 4,4'-oxydianiline (ODA) or 4,4'-methylene dianiline (MDA) with various aromatic dianhydrides. The study shows that the molecular structure of the polyimides strongly influences gas permeability and permselectivity. As a result, the permeability coefficients of the polyimide membranes for each gas vary by over two orders of magnitude. In general, among the polyimide membranes studied, the increase in permeability of polymers is accompanied by the decrease in permselectivity, and the MDA-based polyimide membranes have higher permeability than ODA-based ones. Among the polyimides prepared from bridged dianhydrides, the permeability coefficients to H-2, O-2, and N-2 are progressively increased in the order BPDA < BTDA < ODPA similar to TDPA < DSDA ( SiDA < 6FDA, while H-2/N-2 and O-2/N-2 permselectivity coefficients are progressively decreased in the same order. The copolyimide membranes, which were prepared from 3,3',4,4' biphenyltetracarboxylic dianhydride (BPDA), bis(3,4-dicarboxyphenyl)dimethylsilane dianhydride (SiDA), and ODA, have favorable gas separation properties and are useful for H-2/N-2 separation applications. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Three kinds of high-performance polyimides 1 (poly(ketone-imide) PKI), 2 (poly(ether-imide) PEI) and 3 (poly(oxy-imide) POI) were studied using nuclear magnetic resonance (NMR). The NMR spectra of the polyimides were assigned according to the comprehensive consideration of the substitution effect of different substituting groups, viz. distortionless enhancement by polarization transfer (DEPT), no nuclear Overhauser effect (NNE), analysis of relaxation time, and two-dimensional correlated spectroscopy (COSY) techniques. The structural units of these three polyimides were determined. Carbon-13 and proton relaxation times for PEI and PKI were interpreted in terms of segmental motion characterized by the sharp cutoff model of Jones and Stockmayer (JS model) and anisotropic group rotation such as phenyl group rotation and methyl group rotation. Correlation times for the main-chain motion are in the tens of picosecond range which indicates the high flexibility of polyimide chains. Correlation times for phenyl group and methyl group rotations are more than 1 order of magnitude lower and approximately 1 order of magnitude higher than that of the main chain, respectively.
Resumo:
1,4-Bis(2,3-dicarboxyphenoxy)benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy)benzene dianhydride, bis(2,3-dicarboxyphenoxy) sulfide dianhydride, bis (3,4-dicarboxyphenoxy)sulfide dianhydride, and 2,3,3',4'-tetracarboxy diphenyl sulfide dianhydride were synthesized from 3-chlorophthalic anhydride and 4-chlorophthalic anhydride. Bis(2,3-dicarboxyphenyl)sulfone and bis(3,4-dicarboxyphenyl) sulfone were obtained by the oxidation of the corresponding bis(dicarboxyphenyl)sulfide by hydrogen peroxide. The polyimides from the dianhydrides mentioned above and 4,4'-oxydianiline were prepared. The properties, such as dynamic mechanical behavior, thermooxidative stability, stress-strain behavior, chemical resistance, and permeability to some gases have been in investigated for the isomeric polyimides. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Photosensitive polyimide BTDA-3MPDA was modified by UV irradiation. The structure of UV-irradiated polyimides was investigated by FTIR and gel fraction measurements. The results showed that longer UV exposure time resulted in a higher extent of crosslinking. The gas permeabilities of hydrogen, oxygen and nitrogen through UV-irradiated polyimides were characterized in a temperature range from 30 degrees C to 90 degrees C. Photocrosslinking resulted in a sharp decline in gas permeability for hydrogen, oxygen, and nitrogen through polyimide in the initial stage of photocrosslinking. Then, as the crosslinked benzophenone percentage amounted to 28-38% for hydrogen, 17-31% for oxygen and 3-28% for nitrogen, the gas permeabilities showed another sharp decline. Gas permselectivity increased significantly with the progress of photocrosslinking, and it can be adjusted in a wide range by controlling the extent of crosslinking. Arrhenius plots of gas permeability for hydrogen and oxygen through UV-irradiated polyimides are straight lines; for nitrogen, however, change in the slope of the straight line is observed and activation energies for hydrogen and oxygen permeation show abrupt increases when crosslinked benzophenone percentage amounts to about 30%. UV-irradiated polyimides with simultaneous high gas permeability and permselectivity make them ideal candidate materials for gas separation. (C) 1995 John Wiley & Sons, Inc.
Resumo:
The electrochemical behaviours of three kinds of soluble polyimides were investigated for the first time. It was observed that the cyclic voltammograms(CVS) of these polyimides in nonaqueous solutions are obviously different from that of the poly-imide films casted on surfaces of glass carbon electrode(GCEs) in aqueous solutions.
Resumo:
A series of polyimides with different structures have been synthesized and studied by dynamic mechanical analysis. The results obtained indicate that the beta relaxation in polyimides is related to the rotation of rigid segment(s) of p-phenylene and imide groups around 'hinges' such as -O-, -CH2- and so on in diamines. It is noticed that two kinds of polyimides both with [GRAPHICS] imide groups have verv weak beta relaxation below the glass transition temperature. This phenomenon is due to the fact that the configuration of chains with the above imide groups hinders the rotation of the rigid segments in the chains.
Resumo:
Some results on the thermal analysis of polyimides and polyaryl ether sulfones, some reactions and the purity determination of the monomers, and the thermal stability and kinetic analysis of the thermo-oxidative degradation of these polymers are described.
Resumo:
Push-pull nonlinear optical (NLO) chromophores containing thiazole and benzothiazole acceptors were synthesized and characterized. Using these chromophores a series of second-order NLO polyimides were Successfully prepared from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), pyromellitic dianhydride (PMDA) and 3,3'4,4'-benzophenone tetracarboxylic dianhydride (BTDA) by a standard condensation polymerization technique. These polyimides exhibit high glass transition temperatures ranging from 160 to 188 degrees C. UV-vis spectrum of polyimide exhibited a slight blue shift and decreases in absorption due to birefringence. From the order parameters, it was found that chromophores were aligned effectively. Using in situ poling and temperature ramping technique, the optical temperatures for corona poling were obtained. It was found that the optimal temperatures of polyimides approach their glass transition temperatures. These polyimides demonstrate relatively large d(33) values range between 35.15 and 45.20 pm/V at 532 nm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Pyrene-based molecular tweezers show sequence-specific binding to aromatic polyimides through sterically-controlled donor-acceptor pi-stacking and hydrogen bonding; H-1 NMR spectra of tweezer-complexes with polyimides having different sequence-restrictions show conclusively that the detection of long range sequence-information results from multiple tweezer-binding at adjacent imide residues.
Resumo:
A range of polyimides have been subjected to electron beam radiolysis at different temperatures. These polyimides were chemically designed to suit space applications, being either transparent or having groups which provide oxidation resistance. The structural changes that occur in the polyimides, when subjected to electron beam irradiation doses up to 18.5 MGy and up to temperatures close to their glass transition temperatures, were studied using FT-Raman spectroscopy. The range of polyimides studied included a series of perfluoropolyimides, a silicon-modified polyimide, and Ultem. The changes in the Raman peak intensities of the different groups indicated scission reactions involving the imide rings and ether linkages. (c) 2006 Wiley Periodicals, Inc.