998 resultados para Polycrystalline materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sintered, polycrystalline ZnO ceramics with copper as the only additive exhibit highly nonlinear current‐voltage characteristics. Increasing nonlinearity index (α=4–45) with Cu concentration of 0.01–1 mol % is also variable with respect to ceramic processing methods. Incorporation of Cu in the ZnO lattice is indicated from the electron probe microanalysis and the photoluminescence spectra. Cu acceptors are compensated by holes in the grain boundary layers, whereas the concentration of intrinsic donors is higher in the grain interior. The presence of positive charges leads to thinning of the depletion region, resulting in nonlinear characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of crystallographic texture in polycrystalline copper and nickel has been studied. The deformation texture evolution in these two materials over seven orders of magnitude of strain rate from 3 x 10(-4) to similar to 2.0 x 10(+3) s(-1) show little dependence on the stacking fault energy (SFE) and the amount of deformation. Higher strain rate deformation in nickel leads to weakerh < 101 > texture because of extensive microband formation and grain fragmentation. This behavior, in turn, causes less plastic spin and hence retards texture evolution. Copper maintains the stable end < 101 > component over large strain rates (from 3 x 10(-4) to 10(+2) s(-1)) because of its higher strain-hardening rate that resists formation of deformation heterogeneities. At higher strain rates of the order of 2 x 10(+3) s(-1), the adiabatic temperature rise assists in continuous dynamic recrystallization that leads to an increase in the volume fraction of the < 101 > component. Thus, strain-hardening behavior plays a significant role in the texture evolution of face-centered cubic materials. In addition, factors governing the onset of restoration mechanisms like purity and melting point govern texture evolution at high strain rates. SFE may play a secondary role by governing the propensity of cross slip that in turn helps in the activation of restoration processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycrystalline Ti thin films are shown to gradually transform from face-centered cubic (fcc) to hexagonal close-packed structure (hcp) with increasing film thickness. Diffraction stress analysis revealed that the fcc phase is formed in a highly compressive hcp matrix (>= 2 GPa), the magnitude of which decreases with increasing film thickness. A correlation between stress and crystallographic texture vis-a-vis the fcc-hcp phase transformation has been established. The total free energy change of the system upon phase transformation calculated using the experimental results shows that the fcc-hcp transformation is theoretically possible in the investigated film thickness regime (144-720 nm) and the hcp structure is stable for films thicker than 720 nm, whereas the fcc structure can be stabilized in Ti films much thinner than 144 nm. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) ferroelectric-relaxor thin films have been deposited on La(0.5)nSr(0.5)CoO(3)/(1 1 1) Pt/TiO(2)/SiO(2)/Si by pulsed laser ablation at various oxygen partial pressures in the range 0.05 to 0.4 Torr. All the films have a rhombohedral perovskite structure. The grain morphology and orientation are drastically affected by the oxygen pressure, studied by x-ray diffraction and scanning electron microscopy. The domain structure investigations by dynamic contact electrostatic force microscopy have revealed that the distribution of polar nanoregions and their dynamics is influenced by the grain morphology, orientation and more importantly, oxygen vacancies. The correlation length extracted from autocorrelation function images has shown that the polarization disorder decreases with oxygen pressure up to 0.3 Torr. The presence of polarized domains and their electric field induced switching is discussed in terms of internal bias field and domain wall pinning. Film deposited at 0.4 Torr presents a curious case with unique triangular grain morphology and large polarization disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this paper are to study the effects of plastic anisotropy and evolution in crystallographic texture with deformation on the ductile fracture behaviour of polycrystalline solids. To this end, numerical simulations of multiple void growth and interaction ahead of a notch tip are performed under mode I, plane strain, small scale yielding conditions using two approaches. The first approach is based on the Hill yield theory, while the second employs crystal plasticity constitutive equations and a Taylor-type homogenization in order to represent the ductile polycrystalline solid. The initial textures pertaining to continuous cast Al-Mg AA5754 sheets in recrystallized and cold rolled conditions are considered. The former is nearly-isotropic, while the latter displays pronounced anisotropy. The results indicate distinct changes in texture in the ligaments bridging the voids ahead of the notch tip with increase in load level which gives rise to retardation in porosity evolution and increase in tearing resistance for both materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ingots with compositions CrSi2-x (with 0 < x < 0.1) were synthesized by vacuum arc melting followed by uniaxial hot pressing for densification. This paper reports the temperature and composition dependence of the electrical resistivity, Seebeck coefficient, and thermal conductivity of CrSi2-x samples in the temperature range of 300 K to 800 K. The silicon-deficient samples exhibited substantial reductions in resistivity and Seebeck coefficient over the measured temperature range due to the formation of metallic secondary CrSi phase embedded in the CrSi2 matrix phase. The thermal conductivity was seen to exhibit a U-shaped curve with respect to x, exhibiting a minimum value at the composition of x = 0.04. However, the limit of the homogeneity range of CrSi2 suppresses any further decrease of the lattice thermal conductivity. As a consequence, the maximum figure of merit of ZT = 0.1 is obtained at 650 K for CrSi1.98.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycrystalline BiFeO3 thin films were grown on La0.5Sr0.5CoO3 buffered Pt (200)/TiO2/SiO2/Si substrates under different oxygen partial pressures (10, 25, 50 and 100 mTorr) by puked laser ablation. Piezo-response Force Microscopy and Piezo-Force Spectroscopy have shown that all the films are ferroelectric in nature with locally switchable domains. It has also revealed a preferential downward domain orientation in as-grown films grown under lower oxygen partial pressure (10 and 25 mTorr) with a reversal of preferential domain orientation as the oxygen partial pressure is increased to 100 mTorr during laser ablation. Such phenomena are atypical of multi-grained polycrystalline ferroelectric films and have been discussed On the basis of detect formation with changing growth conditions. For the 50 mTorr grown film, asymmetric domain stability and retention during write-read studies has been observed which is attributed to grain-size-related defect concentration, affecting pinning centres that inhibit domain wall motion. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the transition from single crystalline to polycrystalline behavior, the available data show the strength increasing or decreasing as the number of grains in a cross section is reduced. Tensile experiments were conducted on polycrystalline Ni with grain sizes (d) between 16 and 140 mu m and varying specimen thickness (t), covering a range of lambda (-t/d) between similar to 0.5 and 20. With a decrease in lambda, the data revealed a consistent trend of strength being independent of lambda at large lambda, an increase in strength, and then a decrease in strength. Microstructural studies revealed that lower constraints enabled easier rotation of the surface grains and texture evolution, independent of the specimen thickness. In specimen interiors, there was a greater ease of rotation in thinner samples. Measurements of misorientation deviations within grains revealed important differences in the specimen interiors. A simple model is developed taking into account the additional geometrically necessary dislocations due to variations in the behavior of surface and interior grains, leading to additional strengthening. A suitable combination of this strengthening and surface weakening can give rise to wide range of possibilities with a decrease in lambda, including weakening, strengthening, and strengthening and weakening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unique response of ferroic materials to external excitations facilitates them for diverse technologies, such as nonvolatile memory devices. The primary driving force behind this response is encoded in domain switching. In bulk ferroics, domains switch in a two-step process: nucleation and growth. For ferroelectrics, this can be explained by the Kolmogorov-Avrami-Ishibashi (KAI) model. Nevertheless, it is unclear whether domains remain correlated in finite geometries, as required by the KAI model. Moreover, although ferroelastic domains exist in many ferroelectrics, experimental limitations have hindered the study of their switching mechanisms. This uncertainty limits our understanding of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from reaching their full technological potential. Here we used piezoresponse force microscopy to study the switching mechanisms of ferroelectric-ferroelastic domains in thin polycrystalline Pb 0.7Zr0.3TiO3 films at the nanometer scale. We have found that switched biferroic domains can nucleate at multiple sites with a coherence length that may span several grains, and that nucleators merge to form mesoscale domains, in a manner consistent with that expected from the KAI model. © 2012 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La0.7Ca0.3MnO3 samples were prepared in nano- and polycrystalline forms by the sol-gel and solid state reaction methods, respectively, and structurally characterized by synchrotron X-ray diffraction. The magnetic properties determined by ac susceptibility and dc magnetization measurements are discussed. The magnetocaloric effect in this nanocrystalline manganite is spread over a broader temperature interval than in the polycrystalline case. The relative cooling power of the poly- and nanocrystalline manganites is used to evaluate a possible application for magnetic cooling below room temperature. © 2007 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved pulsed rapid thermal annealing (PRTA) has been used for the solid-phase crystallization (SPC) of a-Si films prepared by PECVD. The SPC can be completed with time-temperature budgets such as 10 cycles of 60-s 550 degrees C thermal bias/1-s 850 degrees C thermal pulse. The microstructure and surface morphology of the crystallized films are investigated by X-ray diffraction (XRD). The results indicate that this PRTA is a suitable post-crystallization technique for fabricating large-area poly-Si films on low-cost substrate. (C) 2000 Elsevier Science B.V. All rights reserved.