960 resultados para Plant-insect interactions


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ectomycorrhizal fungi and saprotrophic microorganisms coexist and interact in the mycorrhizosphere. We review what is known regarding these interactions and how they may influence processes such as ectomycorrhiza formation, mycelial growth, and the dynamics of carbon movement to and within the rhizosphere. Particular emphasis is placed on the potential importance of interactions in decomposition of soil organic matter and degradation of persistant organic pollutants in soil. While our knowledge is currently fairly limited, it seems likely that interactions have profound effects on mycorrhizosphere processes. More extensive research is warranted to provide novel insights into mycorrhizosphere ecology and to explore the potential for manipulating the ectomycorrhizosphere environment for biotechnological purposes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plant parasitic nematodes (PPN) locate host plants by following concentration gradients of root exudate chemicals in the soil. We present a simple method for RNA interference (RNAi)-induced knockdown of genes in tomato seedling roots, facilitating the study of root exudate composition, and PPN responses. Knockdown of sugar transporter genes, STP1 and STP2, in tomato seedlings triggered corresponding reductions of glucose and fructose, but not xylose, in collected root exudate. This corresponded directly with reduced infectivity and stylet thrusting of the promiscuous PPN Meloidogyne incognita, however we observed no impact on the infectivity or stylet thrusting of the selective Solanaceae PPN Globodera pallida. This approach can underpin future efforts to understand the early stages of plant-pathogen interactions in tomato and potentially other crop plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Root herbivores can have a positive or negative effect on the abundance and/or performance of foliar phytophages. In addition, abiotic factors such as drought can either strengthen or weaken this effect, depending on the system under investigation. One explanation for these varying responses lies in differences in the physiological response of host plants to drought and root herbivores. Here, the impacts of root phytophages on a leaf-mining species feeding on annual and perennial plant species (four Sonchus species) were compared. The responses of plants and leaf-miners to dtought and root herbivore treatments were not related to whether the host plant was an annual or perennial. However, where root feeders did affect foliar phytophage performance, this occurred only under a drought treatment, demonstrating the potential for climatic change to alter the outcome of plant-mediated interactions. (c) 2007 Gessellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growing human population will require a significant increase in agricultural production. This challenge is made more difficult by the fact that changes in the climatic and environmental conditions under which crops are grown have resulted in the appearance of new diseases, whereas genetic changes within the pathogen have resulted in the loss of previously effective sources of resistance. To help meet this challenge, advanced genetic and statistical methods of analysis have been used to identify new resistance genes through global screens, and studies of plant-pathogen interactions have been undertaken to uncover the mechanisms by which disease resistance is achieved. The informed deployment of major, race-specific and partial, race-nonspecific resistance, either by conventional breeding or transgenic approaches, will enable the production of crop varieties with effective resistance without impacting on other agronomically important crop traits. Here, we review these recent advances and progress towards the ultimate goal of developing disease-resistant crops.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ants are often attracted to diaspores not adapted for dispersal by ants. These diaspores may occasionally benefit from this interaction. We selected six nonmyrmecochorous plant species (Virola oleifera, Eugenia stictosepala, Cabralea canjerana, Citharexylum myrianthum, Alchornea glandulosa and Hyeronima alchorneoides) whose diaspores differ in size and lipid content, and investigated how these features affect the outcome of ant-diaspore interactions on the floor of a lowland Atlantic forest of Southeast Brazil. A total of 23 ant species were seen interacting with diaspores on the forest floor. Ants were generally rapid at discovering and cleaning the diaspore pulp or aril. Recruitment rate and ant attendance were higher for lipid-rich diaspores than for lipid-poor ones. Removal rate and displacement distance were higher for small diaspores. The large ponerine ant Pachycondyla striata, one of the most frequent attendants to lipid-rich arillate diaspores, transported the latter into their nests and discarded clean intact seeds on refuse piles outside the nest. Germination tests with cleaned and uncleaned diaspores revealed that the removal of pulp or aril may increase germination success in Virola oleifera, Cabralea canjerana, Citharexylum myrianthum and Alchornea glandulosa. Gas chromatography analyses revealed a close similarity in the fatty acid composition of the arils of the lipid-rich diaspores and the elaiosome of a typical myrmecochorous seed (Ricinus communis), corroborating the suggestion that some arils and elaiosomes are chemically similar. Although ant-derived benefits to diaspores - secondary dispersal and/or increased germination - varied among the six plant species studied, the results enhanced the role of ant-diaspore interactions in the post-dispersal fates of nonmyrmecochorous seeds in tropical forests. The size and the lipid-content of the diaspores were shown to be major determinants of the outcome of such interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plants mediate interactions between insects, including leaf- and root-feeders; yet the underlying mechanisms and connection with ecological theory remain unresolved. In this review, based on novel insights into long-distance (i.e., leaf–leaf, root–shoot) defence signalling, we explore the role of phytohormones in driving broad-scale patterns of aboveground–belowground interactions that can be extrapolated to general plant–insect relationships. We propose that the outcome of intra-feeding guild interactions is generally negative due to induction of similar phytohormonal pathways, whereas between-guild interactions are often positive due to negative signal crosstalk. However, not all outcomes could be explained by feeding guild; we argue that future studies should target ecologically representative plant–insect systems, distinguish subguilds, and include plant growth hormones to improve our understanding of plant-mediated interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Indirect plant-mediated interactions between herbivores are important drivers of community composition in terrestrial ecosystems. Among the most striking examples are the strong indirect interactions between spatially separated leaf- and root-feeding insects sharing a host plant. Although leaf feeders generally reduce the performance of root herbivores, little is known about the underlying systemic changes in root physiology and the associated behavioral responses of the root feeders. We investigated the consequences of maize (Zea mays) leaf infestation by Spodoptera littoralis caterpillars for the root-feeding larvae of the beetle Diabrotica virgifera virgifera, a major pest of maize. D. virgifera strongly avoided leaf-infested plants by recognizing systemic changes in soluble root components. The avoidance response occurred within 12 h and was induced by real and mimicked herbivory, but not wounding alone. Roots of leaf-infested plants showed altered patterns in soluble free and soluble conjugated phenolic acids. Biochemical inhibition and genetic manipulation of phenolic acid biosynthesis led to a complete disappearance of the avoidance response of D. virgifera. Furthermore, bioactivity-guided fractionation revealed a direct link between the avoidance response of D. virgifera and changes in soluble conjugated phenolic acids in the roots of leaf-attacked plants. Our study provides a physiological mechanism for a behavioral pattern that explains the negative effect of leaf attack on a root-feeding insect. Furthermore, it opens up the possibility to control D. virgifera in the field by genetically mimicking leaf herbivore-induced changes in root phenylpropanoid patterns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antimicrobial peptides constitute an important factor in the defense of plants against pathogens, and bacterial resistance to these peptides have previously been shown to be an important virulence factor in Dickeya dadantii, the causal agent of soft-rot disease of vegetables. In order to understand the bacterial response to antimicrobial pep- tides, a transcriptional microarray analysis was performed upon treatment with sub-lethal concentration of thionins, a widespread plant peptide. In all, 36 genes were found to be overexpressed, and were classified according to their deduced function as i) transcriptional regulators, ii) transport, and iii) modification of the bacterial membrane. One gene encoding a uricase was found to be repressed. The majority of these genes are known to be under the control of the PhoP/PhoQ system. Five genes representing the different functions induced were selected for further analysis. The results obtained indicate that the presence of antimicrobial peptides induces a complex response which includes peptide-specific elements and general stress-response elements contributing differentially to the virulence in different hosts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Induced defense responses in plants usually involve biosynthesis of antimicrobial metabolites and their targeted secretion at the site of pathogen contact. Our recent study on the model plant Arabidopsis revealed a novel pathogen triggered metabolism pathway for glucosinolates, amino acid-derived thio-glucosides characteristic for crucifer plants that so far were mainly known as insect deterrents (Bednarek et al. 2009).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Gouy-Chapman-Stern model has been developed for the computation of surface electrical potential (ψ0) of plant cell membranes in response to ionic solutes. The present model is a modification of an earlier version developed to compute the sorption of ions by wheat (Triticum aestivum L. cv Scout 66) root plasma membranes. A single set of model parameters generates values for ψ0 that correlate highly with published ζ potentials of protoplasts and plasma membrane vesicles from diverse plant sources. The model assumes ion binding to a negatively charged site (R− = 0.3074 μmol m−2) and to a neutral site (P0 = 2.4 μmol m−2) according to the reactions R− + IΖ ⇌ RIΖ−1 and P0 + IΖ ⇌ PIΖ, where IΖ represents an ion of charge Ζ. Binding constants for the negative site are 21,500 m−1 for H+, 20,000 m−1 for Al3+, 2,200 m−1 for La3+, 30 m−1 for Ca2+ and Mg2+, and 1 m−1 for Na+ and K+. Binding constants for the neutral site are 1/180 the value for binding to the negative site. Ion activities at the membrane surface, computed on the basis of ψ0, appear to determine many aspects of plant-mineral interactions, including mineral nutrition and the induction and alleviation of mineral toxicities, according to previous and ongoing studies. A computer program with instructions for the computation of ψ0, ion binding, ion concentrations, and ion activities at membrane surfaces may be requested from the authors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1 The herbivorous bug Heteropsylla cubana Crawford (Homoptera: Psyllidae) is a pest of the cattle fodder crop Leucaena (Leguminosae: Mimosoideae). The interaction between the psyllid and three varieties of its Leucaena host plant was investigated in relation to the apparent resistance of some Leucaena varieties (Leucaena leucocephala, Leucaena pallida and their hybrids) to attack. 2 Field trials demonstrated that adult psyllids distinguished among the different varieties of Leucaena over a distance, and were attracted to L. leucocephala in significantly higher numbers than to L. pallida or to the hybrid. Pesticide treatment increased the attractiveness of Leucaena plants, even of those deemed to be psyllid resistant. Numbers of psyllid eggs and nymphs, sampled in the field, reflect the arrival rates of adults at the three plant varieties. 3 Wavelength reflectance data of the three Leucaena varieties were not significantly different from one another, suggesting that psyllids cannot discriminate among the three plants using brightness or wavelength cues. There was a differential release of caryophyllene among the three varieties. Release of caryophyllene in L. leucocephala and the hybrid appeared to be influenced by environmental conditions. 4 Experiments demonstrated that caryophyllene (at least on its own) did not influence the behaviour of leucaena psyllids in relation to leucaena plants. 5 The results suggest that host plant volatiles cannot be dismissed as significant in the interaction between the leucaena psyllid and its Leucaena host plants. Further avenues for investigation are recommended and these are related to novel ways of understanding resistance in insect plant inter-relationships.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les écosystèmes dunaires remplissent plusieurs fonctions écologiques essentielles comme celle de protéger le littoral grâce à leur capacité d’amortissement face aux vents et vagues des tempêtes. Les dunes jouent aussi un rôle dans la filtration de l’eau, la recharge de la nappe phréatique, le maintien de la biodiversité, en plus de présenter un attrait culturel, récréatif et touristique. Les milieux dunaires sont très dynamiques et incluent plusieurs stades de succession végétale, passant de la plage de sable nu à la dune bordière stabilisée par l’ammophile à ligule courte, laquelle permet aussi l’établissement d’autres herbacées, d’arbustes et, éventuellement, d’arbres. Or, la survie de ces végétaux est intimement liée aux microorganismes du sol. Les champignons du sol interagissent intimement avec les racines des plantes, modifient la structure des sols, et contribuent à la décomposition de la matière organique et à la disponibilité des nutriments. Ils sont donc des acteurs clés de l’écologie des sols et contribuent à la stabilisation des dunes. Malgré cela, la diversité et la structure des communautés fongiques, ainsi que les mécanismes influençant leur dynamique écologique, demeurent relativement méconnus. Le travail présenté dans cette thèse explore la diversité des communautés fongiques à travers le gradient de succession et de conditions édaphiques d’un écosystème dunaire côtier afin d’améliorer la compréhension de la dynamique des sols en milieux dunaires. Une vaste collecte de données sur le terrain a été réalisée sur une plaine de dunes reliques se trouvant aux Îles de la Madeleine, Qc. J’ai échantillonné plus de 80 sites répartis sur l’ensemble de ce système dunaire et caractérisé les champignons du sol grâce au séquençage à haut débit. Dans un premier temps, j’ai dressé un portait d’ensemble des communautés fongiques du sol à travers les différentes zones des dunes. En plus d’une description taxonomique, les modes de vie fongiques ont été prédits afin de mieux comprendre comment les variations au niveau des communautés de champignons du sol peuvent se traduire en changements fonctionnels. J’ai observé un niveau de diversité fongique élevé (plus de 3400 unités taxonomiques opérationnelles au total) et des communautés taxonomiquement et fonctionnellement distinctes à travers un gradient de succession et de conditions édaphiques. Ces résultats ont aussi indiqué que toutes les zones des dunes, incluant la zone pionière, supportent des communautés fongiques diversifiées. Ensuite, le lien entre les communautés végétales et fongiques a été étudié à travers l’ensemble de la séquence dunaire. Ces résultats ont montré une augmentation claire de la richesse spécifique végétale, ainsi qu’une augmentation de la diversité des stratégies d’acquisition de nutriments (traits souterrains lié à la nutrition des plantes, soit mycorhizien à arbuscule, ectomycorhizien, mycorhizien éricoide, fixateur d’azote ou non spécialisé). J’ai aussi pu établir une forte corrélation entre les champignons du sol et la végétation, qui semblent tous deux réagir de façon similaire aux conditions physicochimiques du sol. Le pH du sol influençait fortement les communautés végétales et fongiques. Le lien observé entre les communautés végétales et fongiques met l’emphase sur l’importance des interactions biotiques positives au fil de la succession dans les environnements pauvres en nutriments. Finalement, j’ai comparé les communautés de champignons ectomycorhiziens associées aux principales espèces arborescentes dans les forêts dunaires. J’ai observé une richesse importante, avec un total de 200 unités taxonomiques opérationnelles ectomycorhiziennes, appartenant principalement aux Agaricomycètes. Une analyse de réseaux n’a pas permis de détecter de modules (c'est-à-dire des sous-groupes d’espèces en interaction), ce qui indique un faible niveau de spécificité des associations ectomycorhiziennes. De plus, je n’ai pas observé de différences en termes de richesse ou de structure des communautés entre les quatre espèces hôtes. En conclusion, j’ai pu observer à travers la succession dunaire des communautés diversifiées et des structures distinctes selon la zone de la dune, tant chez les champignons que chez les plantes. La succession semble toutefois moins marquée au niveau des communautés fongiques, par rapport aux patrons observés chez les plantes. Ces résultats ont alimenté une réflexion sur le potentiel et les perspectives, mais aussi sur les limitations des approches reposant sur le séquençage à haut-débit en écologie microbienne.