904 resultados para Plant waste treatment


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"August 1989."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Shipping list no.: 97-0022-P.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Includes both companies that generate hazardous waste & ship it off-site for management and companies that generate & manage on-site and companies that manage hazardous waste received from off-site.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vol. for <1985> includes booklet for the Illinois Environmental Protection Agency hazardous waste treatment, storage, and disposal facility annual report forms and instructions for completing the annual hazardous waste report.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"August 1985."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A compilation of reports submitted to the Illinois EPA by Illinois hazardous waste generators and hazardous waste treatment, storage and disposal facilities. Includes a brief discussion of the federal Resource Conservation and Recovery Act.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Caption title.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A mathematical model that describes the operation of a sequential leach bed process for anaerobic digestion of organic fraction of municipal solid waste (MSW) is developed and validated. This model assumes that ultimate mineralisation of the organic component of the waste occurs in three steps, namely solubilisation of particulate matter, fermentation to volatile organic acids (modelled as acetic acid) along with liberation of carbon dioxide and hydrogen, and methanogenesis from acetate and hydrogen. The model incorporates the ionic equilibrium equations arising due to dissolution of carbon dioxide, generation of alkalinity from breakdown of solids and dissociation of acetic acid. Rather than a charge balance, a mass balance on the hydronium and hydroxide ions is used to calculate pH. The flow of liquid through the bed is modelled as occurring through two zones-a permeable zone with high flushing rates and the other more stagnant. Some of the kinetic parameters for the biological processes were obtained from batch MSW digestion experiments. The parameters for flow model were obtained from residence time distribution studies conducted using tritium as a tracer. The model was validated using data from leach bed digestion experiments in which a leachate volume equal to 10% of the fresh waste bed volume was sequenced. The model was then tested, without altering any kinetic or flow parameters, by varying volume of leachate that is sequenced between the beds. Simulations for sequencing/recirculating 5 and 30% of the bed volume are presented and compared with experimental results. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study is to quantity the effect of filter bed depth and solid waste inputs on the performance of small-scale vermicompost filter beds that treat the soluble contaminants within domestic wastewater. The study also aims to identify environmental conditions within the filters by quantifying the oxygen content and pH of wastewater held within it. Vermicompost is being utilised within commercially available on-site domestic waste treatment systems however, there are few reported studies that have examined this medium for the purpose of wastewater treatment. Three replicate small-scale reactors were designed to enable wastewater sampling at five reactor depths in 10-cm intervals. The surface of each reactor received household solid organic waste and 1301 m(-2) per day of raw domestic wastewater. The solid waste at the filter bed surface leached oxygen demand into the wastewater flowing through it. The oxygen demand was subsequently removed in lower reactor sections. Both nitrification and denitrification occurred in the bed. The extent of denitrification was a function of BOD leached from the solid waste. The environmental conditions measured within the bed were found to be suitable for earthworms living within them. The study identified factors that will affect the performance and application of the vermicompost filtration technology. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The U.S. Department of Energy (DOE) needs a design basis to properly design a PJM and ventilation systems for the Waste Treatment Plant vessels. In order to meet DOE's needs for proper ventilation and PJM design technologies, Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) has studied the properties for gas holdup in selected non Newtonian fluids with physicochemical properties comparable to nuclear waste. The primary purpose of this research was to study the holdup properties of selected non - Newtonian simulants and quantify the level of gas holdup in selected simulants using continuous argon injection in five gallons vessel. Gas holdup tests involved the injection of gas bubbles in simulant waste in scaled prototypic vessels. The holdup was measured as a function of injection rate in the vessel. Tests were performed with both Laponite, Clay 12%, Clay 27% and Qard 13.5. This work showed that the percentage of holdup was about 3% for all simulants despite the significant differences in rheology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The impact of environmental pollution on the homeostasis of sea turtles remains scarce, particularly in the southern Gulf of Mexico. As many municipalities do not rely on a waste treatment plant along the coastline of the Yucatan Peninsula, the vulnerability of these specimens could results enhanced. We searched for relationships between presence of organochlorine pesticides (OCP) and the level of several oxidative and pollutant stress indicators of the hawksbill sea turtle (Eretmochelys imbricata) during the egg-laying period 2010 at Punta Xen (Campeche, Mexico). Endosulfans, aldrin related (aldrin, endrin, dieldrin, endrin ketone, endrin aldehyde) and dichlorodiphenyldichloroethylene (DDT) families were detected in 17, 21 and 26 of the 30 sampled sea turtles, respectively. Significant correlation existed between the size of sea turtles with the concentration of methoxychlor, cholinesterase activity in plasma and heptachlors family, and catalase activity and hexachlorohexane family. Cholinesterase activity in washed erythrocytes and lipid peroxidation were positively correlated with glutathione reductase activity. Antioxidant enzyme actions seem adequate as no lipids damages were correlated with any OCPs. Future studies are necessary to evaluate the effect of OCPs on males of the area because of the significant detection of methoxychlor that target endocrine functioning and increase its concentration with size of the sea turtles.