869 resultados para Plant functional groups


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecosystem functioning in grasslands is regulated by a range of biotic and abiotic factors, and the role of microbial communities in regulating ecosystem function has been the subject of much recent scrutiny. However, there are still knowledge gaps regarding the impacts of rainfall and vegetation change upon microbial communities and the implications of these changes for ecosystem functioning. We investigated this issue using data from an experimental mesotrophic grassland study in south-east England, which had been subjected to four years of rainfall and plant functional composition manipulations. Soil respiration, nitrogen and phosphorus stocks were measured, and the abundance and community structure of soil microbes were characterised using quantitative PCR and multiplex-TRFLP analysis, respectively. Bacterial community structure was strongly related to the plant functional composition treatments, but not the rainfall treatment. However, there was a strong effect of both rainfall change and plant functional group upon bacterial abundance. There was also a weak interactive effect of the two treatments upon fungal community structure, although fungal abundance was not affected by either treatment. Next, we used a statistical approach to assess whether treatment effects on ecosystem function were regulated by the microbial community. Our results revealed that ecosystem function was influenced by the experimental treatments, but was not related to associated changes to the microbial community. Overall, these results indicate that changes in fungal and bacterial community structure and abundance play a relatively minor role in determining grassland ecosystem function responses to precipitation and plant functional composition change, and that direct effects on soil physical and chemical properties and upon plant and microbial physiology may play a more important role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grazing ungulates play a key role in many ecosystems worldwide and can form diverse assemblages, such as in African savannahs. In many of these ecosystems, present-day ungulate communities are impoverished subsets of once diverse assemblages. While we know that excluding all ungulates from grasslands can exert major effects on both the structure and composition of the vegetation, how different individual ungulate species may have contrasting effects on grassland communities remains poorly understood. Here, we performed a long-term ‘Russian doll’ grazing exclosure experiment in an African savannah to test for the effects of different size classes of grazers on grassland structure and composition. At five sites, grazer species of decreasing size class (ranging from white rhino to scrub hare) were excluded using four fence types, to experimentally create different realized grazer assemblages. The vegetation structure and the grass functional community composition were characterized in 6 different years over a 10-year period. Additionally, animal footprints were counted to quantify the abundance of different ungulate species in each treatment. We found that while vegetation height was mostly driven by total grazing pressure of all species together, ungulate community composition best explained the functional community composition of grasses. In the short term, smaller ungulate species (‘mesoherbivores’) had strongest effects on vegetation composition, by shifting communities towards dominance by species with low specific leaf area and low nutritional value. In the long term, large grazers had stronger but similar effects on the functional composition of the system. Surprisingly, the largest ‘mega-herbivore’, the white rhinoceros, did not have strong effects on the vegetation structure or composition. Synthesis. Our results support the idea that different size classes of grazers have varying effects on the functional composition of grassland plant communities. Therefore, the worldwide decline in the diversity of ungulate species is expected to have (had) major impacts on community composition and functioning of grassland ecosystems, even if total grazing pressure has remained constant, for example, due to replacement by livestock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-latitude ecosystems play an important role in the global carbon cycle and in regulating the climate system and are presently undergoing rapid environmental change. Accurate land cover data sets are required to both document these changes as well as to provide land-surface information for benchmarking and initializing Earth system models. Earth system models also require specific land cover classification systems based on plant functional types (PFTs), rather than species or ecosystems, and so post-processing of existing land cover data is often required. This study compares over Siberia, multiple land cover data sets against one another and with auxiliary data to identify key uncertainties that contribute to variability in PFT classifications that would introduce errors in Earth system modeling. Land cover classification systems from GLC 2000, GlobCover 2005 and 2009, and MODIS collections 5 and 5.1 are first aggregated to a common legend, and then compared to high-resolution land cover classification systems, vegetation continuous fields (MODIS VCFs) and satellite-derived tree heights (to discriminate against sparse, shrub, and forest vegetation). The GlobCover data set, with a lower threshold for tree cover and taller tree heights and a better spatial resolution, tends to have better distributions of tree cover compared to high-resolution data. It has therefore been chosen to build new PFT maps for the ORCHIDEE land surface model at 1 km scale. Compared to the original PFT data set, the new PFT maps based on GlobCover 2005 and an updated cross-walking approach mainly differ in the characterization of forests and degree of tree cover. The partition of grasslands and bare soils now appears more realistic compared with ground truth data. This new vegetation map provides a framework for further development of new PFTs in the ORCHIDEE model like shrubs, lichens and mosses, to represent the water and carbon cycles in northern latitudes better. Updated land cover data sets are critical for improving and maintaining the relevance of Earth system models for assessing climate and human impacts on biogeochemistry and biophysics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AG dinucleotide at the 3′ splice sites of metazoan nuclear pre-mRNAs plays a critical role in catalytic step II of the splicing reaction. Previous studies have shown that replacement of the guanine by adenine in the AG (AG → GG) inhibits this step. We find that the second step was even more severely inhibited by cytosine (AG → CG) or uracil (AG → UG) substitutions at this position. By contrast, a relatively moderate inhibition was observed with a hypoxanthine substitution (AG → HG). When adenine was replaced by a purine base (AG → PG) or by 7-deazaadenine (AG → c7AG), little effect on the second step was observed, suggesting that the 6-NH2 and N7 groups do not play a critical role in adenine recognition. Finally, replacement of adenine by 2-aminopurine (AG → 2-APG) had no effect on the second step. Taken together, our results suggest that the N1 group of adenine functions as an essential determinant in adenine recognition during the second step of pre-mRNA splicing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set describes different vegetation, soil and plant functional traits (PFTs) of 15 plant species in 30 sampling plots of an agricultural landscape in the Haean-myun catchment in South Korea. We divided the data set into two main tables, the first one includes the PFTs data of the 15 studied plant species, and the second one includes the soil and vegetation characteristics of the 30 sampling plots. For a total of 150 individuals, we measures the maximum plant height (cm) and leaf size (cm**2), which means the leaf surface area for the aboveground compartment of each individual. For the belowground compartment, we measured root horizontal width, which is the maximum horizontal spread of the root, rooting length, which is the maximum rooting depth, root diameter, which is the average root diameter of a the whole root, specific root length (SRL), which is the root length divided by the root dry mass, and root/shoot ratio, which is the root dry mass divided by the shoot dry mass. At each of the 30 studied plots, we estimated three different variables describing the vegetation characteristics: vegetation cover (i.e. the percentage of ground covered by vegetation), species richness (i.e. the number of observed species) and root density (estimated using a 30 cm x 30 cm metallic frame divided into nine 10 cm x 10 cm grids placed on the soil profile), as we calculated the total number of roots that appear in each of the nine grids and then we converted it into percentage based on the root count, following. Moreover, in each plot we estimated six different soil variables: Bulk density (g/cm**3), clay % (i.e. percentage of clay), silt % (i.e. percentage of silt), soil aggregate stability, using mean weight diameter (MWD), penetration resistance (kg/cm**2), using pocket penetrometer and soil shear vane strength (kPa).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this dissertation focused on the development and characterisation of novel cocrystals that incorporated the thioamide, amide and imide functional groups. A particular emphasis was placed on the characterisation of these cocrystals by single crystal X-ray diffraction methods. In Chapter One a summary of the intermolecular interactions utilised in this work and a short review of the solid state and multicomponent systems is provided. A brief introduction to the ways in which different multicomponent systems can be distinguished, crystal engineering strategies and a number of cocrystal applications highlights the importance the understanding of intermolecular interactions can have on the physical and chemical properties of crystalline materials. Chapter Two is the first Results and Discussion chapter and includes an introduction that is specific to the chapter. The main body of this work focuses on the primary aromatic thioamide functional group and its propensity to cocrystallise with a number of sulfoxides. Unlike the amide functional group, thioamides are not commonly employed in cocrystallisation studies. This chapter presents the first direct comparison between the cocrystallisation abilities of these two functional groups and the intermolecular hydrogen bonding interactions present in the cocrystal structures are examined. Chapter Three describes the crystal landscape of a short series of secondary aromatic amides and their analogous thioamides. Building on the results obtained in Chapter Two, a cocrystal screen of the secondary thioamides with the sulfoxide functional group was carried out in order to determine the effect removing a hydrogen bond had on the supramolecular synthons observed in the cocrystals. These secondary thioamides are also utilised in Chapter Four, which examines their halogen bonding capabilities with two organoiodine coformers: 1,2- and 1,4-diiodotetrafluorobenzene. Chapter Five explores the cocrystallisation abilities of three related cyclic imides as coformers for cocrystallisation with a range of commonly used coformers. Chapter Six is an overall conclusions chapter that highlights the findings of the results presented in Chapters Two to Five. Chapter Seven details the instrument and experimental data for the compounds and cocrystals discussed in the Results and Discussion Chapters. The accompanying CD contains all of the crystallographic data in .cif format for the novel single crystal structures characterised in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12 degrees C vs. 16 degrees C) affect growth of the sensitive Petunia hybrida cultivar 'SweetSunshine Williams', the transcriptome, carbohydrate metabolism, and phytohormone homeostasis were monitored in aerial plant parts over 4 weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After 3 weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors, and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently tolerant cultivars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-doped activated carbon fibers have been synthesized by using chemically polymerized aniline as source of nitrogen. Commercial activated carbon fibers (A20) were chemically modified with a thin film of polyaniline (PANI) inside the microporosity of the carbon fibers. The modified activated carbon fibers were carbonized at 600 and 800 °C, respectively. In this way, activated carbon fibers modified with surface nitrogen species were prepared in order to analyze their influence in the performance of electrochemical capacitors in organic electrolyte. Symmetric capacitors were made of activated carbon fibers and N-doped activated carbon fibers and tested in a two-electrode cell configuration, using triethylmethylammonium tetrafluoroborate/propylene carbonate (TEMA-BF4/PC) as electrolyte. The effect of nitrogen species in the degradation or stabilization of the capacitor has been analyzed through floating durability tests using a high voltage charging (3.2 V). The results show higher stabilizing effect in carbonized samples (N-ACF) than in non-carbonized samples and pristine activated carbon fibers, which is attributed to the presence of aromatic nitrogen group, especially positively charged N-functional groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globally, peatlands occupy a small portion of terrestrial land area but contain up to one-third of all soil organic carbon. This carbon pool is vulnerable to increased decomposition under projected climate change scenarios but little is known about how plant functional groups will influence microbial communities responsible for regulating carbon cycling processes. Here we examined initial shifts in microbial community structure within two sampling depths under plant functional group manipulations in mesocosms of an oligotrophic bog. Microbial community composition for bacteria and archaea was characterized using targeted 16S rRNA Illumina gene sequencing. We found statistically distinct spatial patterns between the more shallow 10-20 cm sampling depth and the deeper 30-40 cm depth. Significant effects by plant functional groups were found only within the 10-20 cm depth, indicating plant-mediated microbial community shifts respond more quickly near the peat surface. Specifically, the relative abundance of Acidobacteria decreased under ericaceous shrub treatments in the 10-20 cm depth and was replaced by increased abundance of Gammaproteobacteria and Bacteroidetes. In contrast, the sedge rhizosphere continued to be dominated by Acidobacteria but also promoted an increase in the relative recovery of Alphaproteobacteria and Verrucomicrobia. These initial results suggest microbial communities under ericaceous shrubs may be limited by anaerobic soil conditions accompanying high water table conditions, while sedge aerenchyma may be promoting aerobic taxa in the upper peat rhizosphere regardless of ambient soil oxygen limitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

近二十年来,碳同位素技术己被广泛应用于植物生态学,特别是植物“碳一水”关系的研究中。植物的碳同位素组成(δ13C值)是叶片组织合成过程中光合活动的整合,它反映了植物长期的水分利用效率。内蒙古锡林河流域位于我国温带典型草原的核心区域,水分是制约本区植物生产力和群落稳定性的限制因素。因此关于本区植物水分利用效率和水分利用状况的研究,对探讨植物对生境干旱化的适应与响应机制具有十分重要的理论和实践意义。本研究沿土壤水分梯度在锡林河流域选取了沼泽化草甸、盐化草甸、草甸草原、典型草原、退化草地和疏林沙地等8个代表性植物群落,研究主要植物种、功能群和群落的碳同位素组成及叶片含水量、脯氨酸含量等与植物抗旱性相关的生理指标的变化,从植物种、功能群和群落三个层次研究了不同水分条件下植物水分利用效率的变化及其对不同水分生境的响应与适应机制。   1)在所调查的8个植物群落中,C3植物占绝对优势;C3植物的δ13C值和水分利用效率越大,其在整个流域中的分布频度越高,生物量也越大;与生长在湿润生境中的植物相比,生长在较干旱生境中的植物能积累更高水平的脯氨酸。以上结果表明,锡林河流域的植物可能通过两种机制适应当地的干旱生境:一是通过调节气孔导度提高植物的水分利用效率;止是通过积累高水平的脯氨酸增强植株的渗透调节能力并维持相对稳定的水分含量。   2)依照生活型将锡林河流域主要植物种划分成6个植物功能群:乔木、灌木、半灌木、多年生禾草、多年生杂类草和一年生植物。在较湿润生境,多年生杂类草更加丰富并构成了群落地上生物量的绝大部分;而在较干旱生境下,多年生禾草在群落中起更重要的作用;随着土壤含水量下降,灌木和半灌木逐渐增多,且在退化草地和沙地中其相对生物量迅速增加;多年生禾草别3c值显著高于其它功能群;随着土壤水分可利用性降低,多年生禾草和杂类草的别3c值表现出增加的趋势,而灌木/半灌木则表现出相反的趋势。以上结果进一步证明了,在典型草原区以生活型为基础划分的植物功能群可以用来进行较大尺度植物一水分关系的研究。   3)依照植物的水分生态类群,将锡林河流域主要植物种划分为六个植物功能群:旱生植物、中旱生植物、旱中生植物、中生植物、湿中生植物和湿生植物。在较湿润生境中(沼泽化草甸和盐化草甸),湿中生和湿生植物成为优势种并构成地上生物量的主体;在干旱生境中(草甸草原、典型草原和退化草地),旱生和中早生植物占绝对优势并构成群落生物量的90%以上;随着不同水分生态类群所适应的生境从干旱到湿润逐渐转变,植物的δ13C值和水分利用效率显著降低;旱生植物叶片脯氨酸含耸最高,湿中生和湿生植物脯氨酸含量最低,不同水分生态类群脯氨酸含量与其δ13C值和地上生物星.显著正相关关系。   4)不同群落类型的平均δ13C值有显著不同,表现为:典型草原>退化草地>沙地>退化恢复草地>草甸草原之盐化草甸>沼泽化草甸。C4植物的出现、不同物种δ13C值的差异和同一物种在不同生境下δ13C值的变化是影响群落平均δ13C值的主要因素,而这些因素与土壤水分状况和干扰历史(特别是放牧)密切相关。   此外,本文还研究了氮素添加对羊草和大针茅光合和水分利用效率的影响。土壤含氮量的增加可以显著提高羊草叶片光合能力和叭JE,而对大针茅的影响不大。作为锡林河流域两种优势植物,羊草和大针茅通过不同的生理机制来维持较高的WUE适应干旱生境:羊草为高光合、高蒸腾,而大针茅为低光合、低蒸腾。羊草较高的WUE是以降低氮利用效率 (NuE)为代价的;而大针茅在维持较高WUE的同时仍能维持较高的NUE,这一特征使大针茅可以广泛分布于更加干旱和贫瘩的地区。   以上研究结果,为深入开展典型草原生态系统植物与水分关系的研究提供了有价值的信息,进一步证实了稳定性碳同位素技术可以有效地指示不同群落类型中主要植物种长期水分利用效率。同时,通过对其它相关生理指标的测定,可以更好地探讨植物对水分限制的适应策略。我们的研究结果从植物种、功能群和群落三个层次进一步揭示了植物对干旱生境的适应机制,并初步阐明了人类干扰特别是过度放牧对草原群落建群种和优势种的生态替代或/和灌丛入侵的影响。这些研究对生物多样性保护、全球变化和区域可持续发展等热点问题的研究都具有重要的意义。在今后的研究中,结合其它稳定性同位素(如2H,18O和15N)技术,将有助于我们进一步深入研究蒙古高原植物对气候变化和过度放牧的适应与响应机制。