995 resultados para Plant feeding mites
Resumo:
The conservation of diverse and well-distributed fish taxa, as the genus Leporinus, relies intrinsically on the knowledge of the ecological attributes of its representatives. Aiming to increase this knowledge, studies on diet and ecomorphology are ideal to provide important information about species ecology. Thus, this study aimed to analyze aspects of feeding ecology of L. reticulatus, from the upper Rio Juruena, Mato Grosso State, Brazil. The diet of specimens in different ontogenetic stages was compared, as well as their teeth morphology and ecomorphological attributes. Leporinus reticulatus presented omnivorous diet, with higher consumption of invertebrates by smaller specimens (younger ones), and gradual introduction of plant items in larger specimens (older ones). The items consumed by the individuals and the ecomorphological attributes indicated that the species is generalist and opportunistic, besides its association with the river bottom, evidencing a benthic feeding behavior. This species presents a gradual ontogenetic modification in teeth shape and mouth positioning, ranging from a terminal mouth with tricuspid teeth, in smaller specimens, to an inferior mouth with spatula shaped teeth with no cusps, in larger specimens.The ecomorphological attributes indicate an increasing swimming efficiency, and ability for performing vertical displacements, along the ontogenetic development, which in addition to the morphological ontogenetic alterations in the buccal apparatus, contributes to a better ability to explore another niches.
Resumo:
Secondary metabolites from plants are important sources of high-value chemicals, many of them being pharmacologically active. These metabolites are commonly isolated through inefficient extractions from natural biological sources and are often difficult to synthesize chemically. Therefore, their production using engineered organisms has lately attracted an increased attention. Curcuminoids, an example of such metabolites, are produced in Curcuma longa and exhibit anti-cancer and anti-inflammatory activities. Herein we report the construction of an artificial biosynthetic pathway for the curcuminoids production in Escherichia coli. Different 4-coumaroyl-CoA ligases (4CL) and polyketide synthases (diketide-CoA synthase (DCS), curcumin synthase (CURS) and curcuminoid synthase) were tested. The highest curcumin production (70 mg/L) was obtained by feeding ferulic acid and with the Arabidopsis thaliana 4CL1 and C. longa DCS and CURS enzymes. Other curcuminoids (bisdemethoxy- and demethoxycurcumin) were also produced by feeding coumaric acid or a mixture of coumaric and ferulic acids, respectively. Curcuminoids, including curcumin, were also produced from tyrosine through the caffeic acid pathway. To produce caffeic acid, tyrosine ammonia lyase and 4-coumarate 3-hydroxylase were used. Caffeoyl-CoA O-methyltransferase was used to convert caffeoyl-CoA to feruloyl-CoA. This pathway represents an improvement of the curcuminoids heterologous production. The construction of this pathway in another model organism is being considered, as well as the introduction of alternative enzymes.
Resumo:
Stink bugs are seed/fruit sucking insects feeding on an array of host plants. Among them, an exotic tree called privet, Ligustrum lucidum Ait. (Oleaceae), is very common in the urban areas of the Brazilian subtropics, where it is utilized as food source and shelter for over a decem species of bugs, year round. The species composition, their performance and abundance on this host, and possible causes for this association are discussed and illustrated.
Resumo:
The diet and feeding habits of armado catfish, Pterodoras granulosus (Valenciennes, 1821), were studied in the Lajeado Reservoir, Tocantins, Brazil, and the mouth of its tributaries. Stomach contents of 327 specimens were analyzed by the percentage composition and volumetric methods. The feeding of armado on a wide variety of foods, including both animal and plant items, leads to its classification as a euriphagic species with herbivorous tendency. However, it should be noted that armado showed a strong ontogenetic diet shift, with the gradual replacement of detritus and sediment by plant items, especially terrestrial ones. The environmental use pattern of P. granulosus corroborates the ontogenetic shift observed in its diet. Small fish predominated mainly in the benthic region and detritus and sediment represented an important resource, whereas large fish fed mainly on terrestrial plants, as they explore open water sites and the surface of the water column.
Resumo:
Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework.
Resumo:
The life cycle of ear mites of the genus Raillietia Trouessart consists of egg, larva, proto-and deutonymph and adult. The proto-and deutonymph are free living, non feeding instars. The teneral adult is the transfer stage. The minimum period required for completion of the life cycle is approximately eight days.
Resumo:
The application of microbial biocontrol agents for the control of fungal plant diseases and plant insect pests is a promising approach in the development of environmentally benign pest management strategies. The ideal biocontrol organism would be a bacterium or a fungus with activity against both, insect pests and fungal pathogens. Here we demonstrate the oral insecticidal activity of the root colonizing Pseudomonas fluorescens CHA0, which is so far known for its capacity to efficiently suppress fungal plant pathogens. Feeding assays with CHA0-sprayed leaves showed that this strain displays oral insecticidal activity and is able to efficiently kill larvae of three important insect pests. We further show data indicating that the Fit insect toxin produced by CHA0 and also metabolites controlled by the global regulator GacA contribute to oral insect toxicity.
Resumo:
Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species.
Resumo:
DNA based techniques have proved to be very useful methods to study trophic relationships 17 between pests and their natural enemies. However, most predators are best defined as omnivores, 18 and the identification of plant-specific DNA should also allow the identification of the plant 19 species the predators have been feeding on. In this study, a PCR approach based on the 20 development of specific primers was developed as a self-marking technique to detect plant DNA 21 within the gut of one heteropteran omnivorous predator (Macrolophus pygmaeus) and two 22 lepidopteran pest species (Helicoverpa armigera and Tuta absoluta). Specific tomato primers 23 were designed from the ITS 1-2 region, which allowed the amplification of a tomato DNA 24 fragment of 332 bp within the three insect species tested in all cases (100% of detection at t = 0) 25 and did not detect DNA of other plants nor of the starved insects. Plant DNA half-lives at 25ºC 26 ranged from 5.8h, to 27.7h and 28.7h within M. pygmaeus, H. armigera and T. absoluta, 27 respectively. Tomato DNA detection within field collected M. pygmaeus suggests dietary mixing 28 in this omnivorous predator and showed a higher detection of tomato DNA in females and 29 nymphs than males. This study provides a useful tool to detect and to identify plant food sources 30 of arthropods and to evaluate crop colonization from surrounding vegetation in conservation 31 biological control programs.
Resumo:
There has been an ardent interest in herbivore saliva due to its roles in inducing plant defenses and its impact on herbivore fitness. Two techniques are described that inhibit the secretion of labial saliva from the caterpillar, Helicoverpa zea, during feeding. The methods rely on cauterizing the caterpillar's spinneret, the principal secretory structure of the labial glands, or surgically removing the labial salivary gland. Both methods successfully inhibit secretion of saliva and the principal salivary enzyme glucose oxidase. Caterpillars with inhibited saliva production feed at similar rates as the untreated caterpillars, pupate, and emerge as adults. Glucose oxidase has been suggested to increase the caterpillar's survival through the suppression of inducible anti-herbivore defenses in plants. Tobacco (Nicotiana tabacum) leaves fed on by caterpillars with ablated salivary glands had significantly higher levels of nicotine, an inducible anti-herbivore defense compound of tobacco, than leaves fed upon by caterpillars with intact labial salivary glands. Tomato (Lycopersicon esculentum) leaves fed upon by caterpillars with suppressed salivary secretions showed greatly reduced evidence of hydrogen peroxide formation compared to leaves fed upon by intact caterpillars. These two methods are useful techniques for determining the role that saliva plays in manipulating plant anti-herbivore defenses.
Resumo:
Wounding in multicellular eukaryotes results in marked changes in gene expression that contribute to tissue defense and repair. Using a cDNA microarray technique, we analyzed the timing, dynamics, and regulation of the expression of 150 genes in mechanically wounded leaves of Arabidopsis. Temporal accumulation of a group of transcripts was correlated with the appearance of oxylipin signals of the jasmonate family. Analysis of the coronatine-insensitive coi1-1 Arabidopsis mutant that is also insensitive to jasmonate allowed us to identify a large number of COI1-dependent and COI1-independent wound-inducible genes. Water stress was found to contribute to the regulation of an unexpectedly large fraction of these genes. Comparing the results of mechanical wounding with damage by feeding larvae of the cabbage butterfly (Pieris rapae) resulted in very different transcript profiles. One gene was specifically induced by insect feeding but not by wounding; moreover, there was a relative lack of water stress-induced gene expression during insect feeding. These results help reveal a feeding strategy of P. rapae that may minimize the activation of a subset of water stress-inducible, defense-related genes.
Resumo:
Attempts over the past 50 years to explain variation in the abundance, distribution and diversity of plant secondary compounds gave rise to theories of plant defense. Remarkably, few phylogenetically robust tests of these long-standing theories have been conducted. Using >50 species of milkweed (Asclepias spp.), we show that variation among plant species in the induction of toxic cardenolides is explained by latitude, with higher inducibility evolving more frequently at lower latitudes. We also found that: (1) the production of cardenolides showed positive-correlated evolution with the diversity of cardenolides, (2) greater cardenolide investment by a species is accompanied by an increase in an estimate of toxicity (measured as chemical polarity) and (3) instead of trading off, constitutive and induced cardenolides were positively correlated. Analyses of root and shoot cardenolides showed concordant patterns. Thus, milkweed species from lower latitudes are better defended with higher inducibility, greater diversity and added toxicity of cardenolides.
Resumo:
The amount of nitrogen required to complete an insect's life cycle may vary greatly among species that have evolved distinct life history traits. Myrmecophilous caterpillars in the Lycaenidae family produce nitrogen-rich exudates from their dorsal glands to attract ants for protection, and this phenomenon has been postulated to shape the caterpillar's host-plant choice. Accordingly, it was postulated that evolution towards myrmecophily in Lycaenidae is correlated with the utilization of nitrogen-rich host plants. Although our results were consistent with the evolutionary shifts towards high-nutrient host plants serving as exaptation for the evolution of myrmecophily in lycaenids, the selection of nitrogen-rich host plants was not confined to lycaenids. Butterfly species in the nonmyrmecophilous family Pieridae also preferred nitrogen-rich host plants. Thus, we conclude that nitrogen is an overall important component in the caterpillar diet, independent of the level of myrmecophily, as nitrogen can enhance the overall insect fitness and survival. However, when nitrogen can be obtained through alternative means, as in socially parasitic lycaenid species feeding on ant brood, the selective pressure for maintaining the use of nutrient-rich host plants is relaxed, enabling the colonization of nitrogen-poor host plants.
Resumo:
Résumé de la thèseBien que le mutualisme puisse être considéré comme une relation harmonieuse entre différentes espèces, son étude révèle plutôt une exploitation réciproque où chaque partenaire tente de maximiser ses bénéfices tout en réduisant ses coûts. Dans ce contexte, l'identification des facteurs qui favorisent ou contrarient, au cours de l'évolution, une issue mutualiste est une étape majeure pour pouvoir reconstruire les étapes clés menant à l'apparition et au maintien des interactions mutualistes. Le but de ce doctorat était l'identification des traits phénotypiques qui permettent à la plante Silene latofolia (Caryophyllacée)et à son pollinisateur - prédateur de graines, la phalène Hadena bicruris (Noctuidé), d'augmenter les bénéfices nets que chacun retire de l'interaction. Ce système d'étude est particulièrement bien approprié à l'étude de ces traits, car on peut assez facilement estimer la qualité et la quantité des descendants (fitness) des deux partenaires. En effet, la femelle papillon pond un oeuf dans la fleur qu'elle pollinise et sa larve se développe dans le fruit, consommant les graines de la plante. Ainsi, sur une même plante, il est possible d'estimer les succès respectifs de la plante et du papillon à obtenir une descendance. De plus, le conflit d'intérêt autour des graines qui sont indispensables, à la fois à la plante et au papillon, peut stimuler l'évolution de traits qui limitent la surexploitation réciproque des partenaires. Dans une première étude, j'ai montré que le papillon mâle était un pollinisateur efficace de S. latifolia et qu'ainsi, il permettait à la plante d'augmenter le nombre de graines produites (i.e.bénéfice) sans pour autant augmenter la quantité de larves sur la plante. Dans ce système, les papillons pondent un seul oeuf par fleur, déposé soit à l'intérieur de la fleur, dans le tube de corolle, soit sur le pétale. Ma seconde étude montre que les plantes répondent différemment à la présence des oeufs suivant leur position. Aussi, quand l'oeuf est placé dans la fleur, la plante a davantage tendance à ne pas développer le fruit de la fleur infesté ou bien à produire des fruits plus petits que lorsque l'oeuf est placé sur le pétale. Enfin, j'ai montré que la femelle du papillon pond plus souvent sur le pétale lorsque elle visite des fleurs dotées d'un long tube de corolle, et que les larves issues de ces oeufs ont moins de chances de réussir à pénétrer dans le fruit que les larves issues des oeufs placés à l'intérieur de la fleur. Aussi, la variation observée du site de ponte pourrait être causé par la morphologie de la fleur qui contraint le papillon à pondre sur le pétale. Vu dans leur ensemble, les résultats obtenus pendant ce doctorat suggèrent que la participation des mâles à la pollination, l'absence de développement des fruits et la profondeur du tube de corolle pourraient réduire les coûts que S. latifolia subit dans son interaction avec H. bicruris. Par ailleurs, je n'ai pas détecté de mécanismes qui permettraient au papillon de réduire les coûts que la plante pourrait lui imposer. La prochaine étape serait de déterminer l'effet des traits identifiés dans ce doctorat sur la fitness globale de la plante et du papillon pour estimer pleinement leur efficacité à réduire les coûts et à favoriser une issue mutualiste. De même, il faudrait évaluer l'effet de ces traits en populations naturelles pour identifier le rôle des facteurs environnementaux sur leur efficacité.AbstractAlthough mutualisms can be regarded as harmonious relationships between the interacting partners, they are best conceptualized as reciprocal exploitations in which each partner attempts to increase its own benefits and decrease its costs. To date, identifying the factors which promote or discourage mutualistic outcomes remains a major goal to reconstruct the ecological conditions leading to mutualisms. The aim of this PhD thesis was to identify phenotypic traits that may increase the net benefits of each partner in the interaction between the plant Silene latifolia (Caryophyllaceae) and its pollinator / seed predator, the moth Hadena bicruris (Noctuidae). This study system is particularly well suited because the fitness of both interacting species can be assessed. The female moth lays its egg in the flower it pollinated, and its offspring grows in the fruit, feeding on the seeds of the plant, which allows for the follow-up of both larva and fruit fates. Furthermore, the inherent conflict of interest over the seeds as plant progeny vs. larval resource may stimulate the evolution of traits that reduce overexploitation in both the moth and plant. In a first study, I show that male moths are efficient pollinators, hence increasing seed production without increasing oviposition. The contribution of male moths to pollination might thus improve the net benefits of the interaction for the host plant. Females of the H. bicruris moth lay a single egg per flower, and place it either inside the corolla tube or on the petal. My second study shows that plants are more likely to abort the infested flower or to produce a smaller fruit when the egg was experimentally placed inside the flower compared to plants that received an egg on the petal. Finally, female moths were found to lay their eggs more frequently on the petal when visiting a flower with a deep corolla tube, and larvae hatching from these eggs less likely to successfully attack the fruit. Variation in egg position on the flower may thus be the result of a constraint imposed by floral morphology. Overall, this PhD work suggests that the pollination by male moths, flower abortion, and deep corolla tube may efficiently reduce the costs experienced by S. latifolia in its interaction with H. bicruris. Interestingly, no apparent mechanism of costs reduction was detected for the moth. Further studies should focus on the effects of these traits (i) in the long term fitness of both the plant and the insect and (ii) their interactions with environmental factors (biotic and abiotic) that may affect their efficiency in natural populations.
Resumo:
Piperaceae species have been placed among the basal angiosperm and are adapted to a variety of habitats including moist forests, secondary vegetation and dry high lands. The major anatomical/morphology features are of small trees, vines, and shrubs for Piper species, while the epiphytic and succulent characteristics are predominant forms among Peperomia species. Their secondary chemistry can be mostly represented by amides, phenylpropanoids/lignoids, and chromenes in addition to a phletoria of biosynthetically mixed-origin secondary compounds. Although several amides and lignans are known as insecticides, several phytophagous insects, among which some considered pests of economic importance, have been observed feeding vigorously on Piperaceae species. Herein we describe the feeding preferences of fourteen phytophagous species of Coleoptera, Lepidoptera and Hemiptera over approximately fifty Piperaceae species observed in São Paulo, SP, Brazil, in a long-term basis.