970 resultados para Plant analysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of sesquioxides on the mechanisms of chemical reactions that govern the transformation between exchangeable potassium (Kex) and non-exchangeable K (Knex) was studied on acid tropical soils from Colombia: Caribia with predominantly 2 : 1 clay minerals and High Terrace with predominantly 1 : 1 clay minerals and sesquioxides. Illite and vermiculite are the main clay minerals in Caribia followed by kaolinite, gibbsite, and plagioclase, and kaolinite is the major clay mineral in High Terrace followed by hydroxyl-Al interlayered vermiculite, quartz, and pyrophyllite. The soils have 1.8 and 0.5% of K2O, respectively. They were used either untreated or prepared by adding AlCl3 and NaOH, which produced aluminum hydroxide. The soils were percolated continuously with 10mM NH4OAc at pH 7.0 and 10 mM CaCl2 at pH 5.8 for 120 h at 6 mL h(-1) to examine the release of Kex and Knex. In the untreated soils, NH4+ and Ca-2(+) released the same amounts of Kex from Caribia, whereas NH4+ released about twice as much Kex as Ca2+ from High Terrace. This study proposes that the small ionic size of NH4+ (0.54nm) enables it to enter more easily into the K sites at the broken edges of the kaolinite where Ca2+ (0.96 nm) cannot have access. As expected for a soil dominated by 2 : 1 clay minerals, Ca2+ caused Knex to be released from Caribia with no release by NH4+. No Knex was released by either ion from High Terrace. After treatment with aluminum hydroxide, K release from the exchangeable fraction was reduced in Caribia due to the blocking of the exchange sites but release of Knex was not affected. The treatment increased the amount of Kex released from the High Terrace soil and the release of Knex remained negligible although with Ca2+ the distinction between Kex and Knex was unclear. The increase in Kex was attributed to the initially acidic conditions produced by adding AlCl3 which may have dissolved interlayered aluminum hydroxide from the vermiculite present, thus exposing trapped K as exchangeable K. The subsequent precipitation of aluminum hydroxide when NaOH was added did not interfere with the release of this K, and so was probably formed mostly on the surface of the dominant kaolinite. Measurement of availability of K by standard methods using NH4 salts could result in overestimates in High Terrace and this may be a more general shortcoming of the methods in kaolinitic soils.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil acidity is one of the most important factors limiting agricultural production in the tropics. For this reason, the objective of this research work was to evaluate the effects of soil liming on the performance of carambola (Averrhoa carambola) trees. The experiment took place at the Citrus Experimental Station in Bebedouro, state of São Paulo, Brazil. The soil was a Typic Haplustox (V = 26% at the 0- to 20-cm layer) between August 1999 and July 2003. The following doses of limestone were employed: 0, 1.85, 3.71, 5.56, and 7.41 t ha(-1). During 40 months after the experiment was set up, soil chemical attributes were periodically examined. For a period of 2 years, the trees had their leaves analyzed for micro-and macronutrients; their trunk diameter, height, and crown volume measured; and the production of fruits determined. Liming improved in evaluated chemical attributes of the soil: pH, calcium (Ca), magnesium (Mg), BS, V, and hydrogen and aluminium (H + At) from the upper 60 cm of soil when the samples were taken from both the line and between the lines of plants. In the leaves, the levels of Ca and Mg also increased. The highest fruit yields were observed when soil base saturations reached 45% on the lines and 50% between the lines, as well as when foliar levels of 8.0 g of Ca and 4.7 a of Mg per kilogram of leaves were attained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A soil sample was taken from the top 0-20cm at Jaboticabal county, São Paulo State, Brazil, air dried, sieved to 5mm, and placed into pots (2700g per pot). Sewage sludge was air-dried, ground to 2mm, and thoroughly mixed to the top 0-10cm soil of each pot, which were irrigated with distilled water in a total volume equivalent to the last 30years average rainfall in the region. Sorghum was sowed 120days after sewage sludge incorporation and then the irrigation was made according to the plants' requirement. When the plants were about 10 cm high, they were thinned to two per pot. Soil samples (0-10, 10-20, and 20-30 cm depth) were obtained immediately after the incorporation of sewage sludge and at 30, 60, 120, and 170 days after, air dried, sieved to 2 mm and analyzed for organic matter (OM), pH (0,01 mol L-1 CaCl2), extractable P (resin), potassium (K), calcium (Ca), and magnesium (Mg), amylase and cellulase activity. Sewage sludge increased soil OM, pH, extractable phosphorus (P), K. Ca. amylase and cellulase activity, especially at the rate 16 t ha(-1). Organic matter, extractable P, K, Ca, Mg. and amylase activity were higher in the top 0-10cm, while pH was higher in the 20-30cm layer. Amylase activity was not affected by sampling depth. Organic matter, pH, extractable P. K, Ca, and Mg decreased during the experimental period. Amylase activity decreased until sorghum was sowed and increased afterwards. Cellulase activity increased until 90 days after sewage sludge application and then decreased. Sewage sludge used in the experiment should already contain some amylase activity or a substance that was a soil enzyme activator and also a substance that was an inhibitor of soil cellulase inhibitor. Sonic of the plant nutrients contained in sewage sludge, mainly P, did not migrate down the soil column. an indication that sewage sludge should be incorporated into the soil to improve nutrient bioavailability. Sorghum roots increased amylase activity but did not affect cellulase activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High soil acidity influences the availability of mineral nutrients and increases that of toxic aluminium (Al), which has a jeopardizing effect on plant growth. The objective of this research was to evaluate the effects of soil liming on the development of guava (Psidium guajava L.) plants, on soil chemical characteristics, and on fruit yield. The experiment was carried out at the Bebedouro Citrus Experimental Station, state of São Paulo, Brazil, in a Typic Hapludox soil, from August 1999 to March 2003. The treatments consisted of limestone dose: D0 = zero; D1 = half dose; D2 = total dose; D3 = 1.5 times the dose, and D4 = 2 times the dose to raise the V value to 70%. The doses corresponded to zero, 1.85, 3.71, 5.56, and 7.41tha(-1) applied to the upper soil layer (0-30cm deep) before planting. The results showed that liming caused an improvement in the evaluated soil chemical characteristics up to a depth of 60cm in soil samples both in the line and between lines. The highest fruit yields were obtained when the base saturation reached a value of 55% in the line and 62% between the lines. Foliar levels of calcium (Ca) and magnesium (Mg) were 8.8 and 2.5gkg-1, respectively. The highest limestone dose maintained the soil base saturation (at the layer of 0-20cm) in the line close to 55% during at least 40 months after the incorporation of limestone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports a study regarding the distribution of lead in the organic matter fractions of a loamy oxisol treated with stable manure, and its effect on the soil microbial biomass. The experimental design was a completely randomized factorial with three replicates. Treatments were four lead (Pb) rates (0, 200, 400, and 600 mg kg(-1) soil), two levels of manure (0 and 30 Mg ha(-1)) and two sampling times (30 and 60 days after lead application). Total and soil lead soluble in Mehlich 1 extractant, and Ph in the different fractions of the organic matter (fulvic acid, humic acid, and residual) were evaluated along with the soil microbial biomass. Data showed that lead, applied as PbCl2, was concentrated in the residual fraction. The application of manure at the rate of 30 Mg ha(-1) did not affect lead distribution in the fractions until 60 days after incorporation. Lead extracted by Mehlich 1 increased as function of the quantity applied. Manure stimulated the growth of the soil microbial biomass which was reduced by the 200 mg kg(-1) doses of lead, with manure application, increasing, however, with larger rates. Mehlich 1 extracted only part of the lead present in the residual fraction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Potassium (K) leaching is affected by soil texture and available K, among other factors. In this experiment, effects of soil texture and K availability on K distribution were studied in the presence of roots, with no excess water. Soils from two 6-year field experiments on a sandy clay loam and a clay soil fertilized yearly with 0, 60, 120, and 180 kg ha-1 of K2O were accommodated in pots that received 90 kg ha-1 of K2O. Soybean was grown up to its full bloom (R2). Under field conditions, K leaching below the arable layer increased with K rates, but the effect was less noticeable in the clay soil. Potassium leaching in a sandy clay loam soil was related to soil K contents from prior fertilizations. With no excess water, in the presence of soybean roots, K distribution in the profile was significant in the lighter textured soil but was not apparent on the heavier textured soil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The construction of a large reservoir on the Parana River (Selviria, MS, Brazil) disturbed the soil of an extensive agricultural area in which between 5 and 8m of topsoil were removed. In this area, a restoration process was carried out using revegetation with green manure without or with amendments (for 4 years), crops (2 years), and Brachiaria decumbens cultivation for 6 years. The following treatments were used: control plots, T0 (residual subsoil) and T1 (soil tillage without culture); plots with green manure and without amendments: T2 (velvet bean) and T3 (pigeon pea); plots with green manure and with amendments: T4 (limed + velvet bean), T5 (limed + pigeon pea); T6 (limed + gypsum + velvet bean) and T7 (limed + gypsum + pigeon-pea). They were arranged in randomized blocks. After 13 years of rehabilitation process, when the soil was cultivated with brachiaria, the structural stability in three depths was evaluated. Organic-matter content and others chemical properties did not show any relationship with the stability of aggregates of the experimental area as measured by mean weight diameter (MWD). Significant differences between depths were found for MWD and the other parameters measured. Nevertheless, there were no significant differences observed between treatments, independent of the adopted system of revegetation. By taking an absolute value of MWD, the stability of superficial layer was observed in the following sequence: T7 T5 T6 T1 T2 T3 T4 T0. The control plot (T0) gave the lowest value of MWD (1.76mm) in relation to the plots in restoration process. Treatment T7 was the most effective in recovering the stability of aggregates (2.63mm). However, treatments T5 and T6 displayed a similar value. After 13 years of revegetation practices, a slight recovery of the stability was observed, although this is still lower than stability in soils of similar edaphic conditions in the original topsoil of experimental area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the building of a hydroelectrical power plant at Ilha Solteira in the Parana River (Brazil), materials of a highly weathered soil Oxisol were extracted from a depth between 5 and 8 m for engineering works. This resulted in an abandoned depression area. The topsoil was not salvaged and the open pit was not backfilled, and as result vegetation hardly or not at all recovered. on the residual saprolite materials, an experimental field was established to assess different soil rehabilitation treatments. Field experiments were initiated in 1992. After soil tillage, two different crops and three different liming strategies were compared, giving six combinations. In addition, two uncropped control treatments, tilled and no-tilled, were established so that a total of eight treatments were assessed. The experimental design consisted of four randomized experimental blocks, which included a total of 32 plots with a plot area of 100 m(2). This experiment was used to study the effectiveness of the soil-reclamation treatments after a 9-year period. Soil samples were taken at three different depths (0-10, 10-20, and 20-40 cm), and they were analyzed routinely for pH, organic-matter content, and cation exchange capacity (CEC). Revegetation of the abandoned saprolite material increased soil organic-matter content and cation exchange capacity (CEC), and to some extent small differences between treatments were evidenced. Exchangeable calcium (Ca) and magnesium (Mg) recovered faster than organic-matter content. A significant linear relationship was found between organic-matter content and CEC, suggesting continued addition of organic material will further approach the value of these parameters to those levels corresponding to natural soils under "Cerrado" vegetation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of triple superphosphate (TS) and liming on macronutrient accumulation and root growth of Pioneer 3072 and Cargill 505 com hybrids were studied. Com plants were grown up to 30 days in pots with 7 L of a dark red Latosol sandy loam (Haplortox). Lime was applied to raise base saturation to 30, 50, and 70%, in two levels of phosphorus (P) fertilization with TS (0 and 200 ppm P). There was an increase in root surface due to lime only in pots without TS, with no effects on plant growth or nutrition. Both com hybrids responded to P fertilization, but Pioneer yielded more dry matter than Cargill. The roots of Cargill were thicker and, when in TS presence, were longer and had a larger surface than Pioneer. There was an increase in macronutrient uptake in the P fertilized pots. Pioneer required more nutrients and showed a higher efficiency in acquiring and utilizing the nutrients from the soil. A higher response of Pioneer in dry matter and nutrient acquisition was more related to the physiological efficiency than to root morphology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organic residues may cause major health and environmental problems. This is the case in our study area, where more than 10 billion L per year of residential and industrial waste are produced. Land application of biosolids can be an economical solution by recycling waste and can provide valuable fertilizer if used correctly. The aim of this work was to study the effect of biosolids on the chemical properties of an Oxisol. The experiment was located at Ilha Solteira northwest of São Paulo State, Brazil. The soil was cropped to Sorghum bicolor.The field experimental design consisted of random blocks with six treatments and four replications of each treatment. Biosolids were surface applied to four treatments at rates of 5, 10, 20, and 40 Mg ha(-1) on a dry matter basis; in addition, a treatment with mineral fertilizer and a control were included. One year after biosolids application, soil samples were taken at 0-10, 10-20, and 20-40 cm. Organic matter content (Walkley-Black) and pH (CaCl2) were routinely determined. Cation exchange capacity, exchangeable bases (Ca, Mg, K), and P were determined by exchange resin extraction. No significant differences in any of the analyzed properties were found below the 20 cm depth. Extractable phosphorus (P) and potassium (K) increased with increasing biosolids rate in the top 20 cm, whereas calcium (Ca) and (Ma) magnesium content were not significantly influenced by biosolids. Soil pH decreased with increasing biosolids application. The sewage sludge application did not influence the sorghum production in the first year of culture, under unfavorable soil moisture conditions, but it influenced the dry matter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil columns were produced by filling PVC tubes with a Dark Red Latosol (Acrortox, 22% of clay). A compacted layer was established at the depth of 15 cm in the columns. In the compacted layer, soil was packed to 1.13, 1.32, 1.48, and 1.82 Mg kg(-1), resulting in cone resistances of 0.18, 0.43, 1.20, and 2.50 MPa. Cotton was cropped for 30 days. Lime was applied to raise base saturation to 40, 52, and 67%. The highest base saturation caused a decrease in phosphorus (P) and zinc (Zn) concentrations in the plants. A decrease in root dry matter, length and surface area was also observed. This could be a consequence of lime induced Zn deficiency. Root growth was decreased in the compacted layer, and complete inhibition was noticed at 2.50 MPa. Once the roots got through the compacted layer, there was a growth recovery in the bottom layer of the pots. The increase in base saturation up 52% was effective in preventing a decrease in cotton root length at soil resistances to 1.20 MPa. Where the roots were shorter, there was an increase in nutrient uptake per unit of root surface area, which kept the plants well nourished, except for P.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The type of tillage and crop systems used can either degrade or cause a recovery of the structure of agricultural soils. The objective of this study was to determine the structural stability of the soil using mean weight diameter (MWD) of soil aggregates in three different periods of a succession of crops consisting of beans/cover plants/maize under no tillage (NT) and conventional tillage (CT) management systems. Soils were sampled at 0- to 5-cm and 5- to 15-cm depths in three periods (P1, P2, P3): 1) November 2002 (spring/summer), 2) April 2003 (beginning of autumn), and 3) December 2003 (end of spring/beginning of summer). Aggregate stability was determined by wet sieving. The effects of the tillage systems, vegetal residues, and sampling depths on the structural stability of the aggregates were assessed and then related to organic matter (OM) contents. Aggregate stability showed temporal variation as a function of OM contents and sampling period. No tillage led to high MWD values in all study periods. The lowest MWD values and OM contents were observed 4 months after the management of the residues of cover plants. This finding is consistent with the fact that at the time of the samplings, most of the OM had already mineralized. The residues of sunn-hemp, millet, and spontaneous vegetation showed similar effects on soil aggregate stability.