891 resultados para Planets and satellites: general
Resumo:
This work generates, through a sample of numerical simulations of the restricted three-body problem, diagrams of semimajor axis and eccentricity which defines stable and unstable zones for particles in S-type orbits around Pluto and Charon. Since we consider initial conditions with 0 <= e <= 0.99, we found several new stable regions. We also identified the nature of each one of these newly found stable regions. They are all associated to families of periodic orbits derived from the planar circular restricted three-body problem. We have shown that a possible eccentricity of the Pluto-Charon system slightly reduces, but does not destroy, any of the stable regions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aims. We study trajectories of planetesimals whose orbits decay due to gas drag in a primordial solar nebula and are perturbed by the gravity of the secondary body on an eccentric orbit whose mass ratio takes values from mu(2) = 10(-7) to mu(2) = 10(-3) increasing ten times at each step. Each planetesimal ultimately suffers one of the three possible fates: (1) trapping in a mean motion resonance with the secondary body; (2) collision with the secondary body and consequent increase of its mass; or (3) diffusion after crossing the orbit of the secondary body.Methods. We take the Burlirsh-Stoer numerical algorithm in order to integrate the Newtonian equations of the planar, elliptical restricted three-body problem with the secondary body and the planetesimal orbiting the primary. It is assumed that there is no interaction among planetesimals, and also that the gas does not affect the orbit of the secondary body.Results. The results show that the optimal value of the gas drag constant k for the 1: 1 resonance is between 0.9 and 1.25, representing a meter size planetesimal for each AU of orbital radius. In this study, the conditions of the gas drag are such that in theory, L4 no longer exists in the circular case for a critical value of k that defines a limit size of the planetesimal, but for a secondary body with an eccentricity larger than 0.05 when mu(2) = 10(-6), it reappears. The decrease of the cutoff collision radius increase the difusions but does not affect the distribution of trapping. The contribution to the mass accretion of the secondary body is over 40% with a collision radius 0.05R(Hill) and less than 15% with 0.005R(Hill) for mu(2) = 10(-7). The trappings no longer occur when the drag constant k reachs 30. That means that the size limit of planetesimal trapping is 0.2 m per AU of orbital radius. In most cases, this accretion occurs for a weak gas drag and small secondary eccentricity. The diffusions represent most of the simulations showing that gas drag is an efficient process in scattering planetesimals and that the trapping of planetesimals in the 1: 1 resonance is a less probable fate. These results depend on the specific drag force chosen.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We investigate and solve in the context of general relativity the apparent paradox which appears when bodies floating in a background fluid are set in relativistic motion. Suppose some macroscopic body, say, a submarine designed to lie just in equilibrium when it rests (totally) immersed in a certain background fluid. The puzzle arises when different observers are asked to describe what is expected to happen when the submarine is given some high velocity parallel to the direction of the fluid surface. on the one hand, according to observers at rest with the fluid, the submarine would contract and, thus, sink as a consequence of the density increase. on the other hand, mariners at rest with the submarine using an analogous reasoning for the fluid elements would reach the opposite conclusion. The general relativistic extension of the Archimedes law for moving bodies shows that the submarine sinks. As an extra bonus, this problem suggests a new gedankenexperiment for the generalized second law of thermodynamics.
Resumo:
We calculate the gravitational deflection of massive particles moving with relativistic velocity in the solar system to second post-Newtonian order. For a particle passing close to the Sun with impact parameter b, the deflection in classical general relativity is Phi(C)[GRAPHICS]where v(0) is the particle speed at infinity and M is the Sun's mass. We compute afterwards the gravitational deflection of a spinless neutral particle of mass m in the same static gravitational field as above, treated now as an external field. For a scalar boson with energy E, the deflection in semiclassical general relativity (SGR) is Phisc[GRAPHICS]This result shows that the propagation of the =2E spinless massive boson produces inexorably dispersive effects. It also shows that the semiclassical prediction is always greater than the geometrical one, no matter what the boson mass is. In addition, it is found that SGR predicts a deflection angle of similar to2.6 arcsec for a nonrelativistic spinless massive boson passing at the Sun's limb.
Resumo:
We study the effects of Jupiter mass growth in order to permanently capture prograde satellites. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time while considering the decrease in Jupiter's mass. We considered the particle's initial conditions to be prograde, at pericenter, in the region 100R(4) <= a <= 400R(4) and 0 <= e <= 0.5. The results give Jupiter's mass at the moment when the particle escapes from the planet. Such values give an indication of the conditions that are necessary for capture. An analysis of these results shows that prograde satellite capture is more complex than a retrograde one. It occurs in a two-step process. First, when the particles get inside about 0.85R(Hill) (Hills' radius), they become weakly bound to Jupiter. Then, they keep migrating toward the planet with a strong decrease in eccentricity, while the planet is growing. The radial oscillation of the particles reduces significantly when they reach a radial distance that is less than about 0.45R(Hill) from the planet. Three-dimensional simulations for the known prograde satellites of Jupiter were performed. The results indicate that Leda, Himalia, Lysithea, and Elara could have been permanently captured when Jupiter had between 50% and 60% of its present mass.
Resumo:
We numerically investigate the long-term dynamics of the Saturnian system by analyzing the Fourier spectra of ensembles of orbits taken around the current orbits of Mimas, Enceladus, Tethys, Rhea and Hyperion. We construct dynamical maps around the current position of these satellites in their respective phase spaces. The maps are the result of a great deal of numerical simulations where we adopt dense sets of initial conditions and different satellite configurations. Several structures associated to the current two-body mean-motion resonances, unstable regions associated to close approaches between the satellites, and three-body mean-motion resonances in the system, are identified in the map. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The problem of escape/capture is encountered in many problems of the celestial mechanics -the capture of the giants planets irregular satellites, comets capture by Jupiter, and also orbital transfer between two celestial bodies as Earth and Moon. To study these problems we introduce an approach which is based on the numerical integration of a grid of initial conditions. The two-body energy of the particle relative to a celestial body defines the escape/capture. The trajectories are integrated into the past from initial conditions with negative two-body energy. The energy change from negative to positive is considered as an escape. By reversing the time, this escape turns into a capture. Using this technique we can understand many characteristics of the problem, as the maximum capture time, stable regions where the particles cannot escape from, and others. The advantage of this kind of approach is that it can be used out of plane (that is, for any inclination), and with perturbations in the dynamics of the n-body problem. © 2005 International Astronomical Union.
Resumo:
Among the hidden pieces of the giant puzzle, which is our Solar system, the origins of irregularsatellites of the giant planets stand to be explained, while the origins of regular satellites arewell explained by the in situ formation model through matter accretion. Once they are notlocally formed, the most acceptable theory predicts that they had been formed elsewhere andbecame captured later, most likely during the last stage of planet formation. However, underthe restricted three-body problem theory, captures are temporary and there is still no assistedcapture mechanism which is well established. In a previous work, we showed that the capturemechanism of a binary asteroid under the co-planar four-body scenario yielded permanentcaptured objects with an orbital shape which is very similar to those of the actual progradeirregular Jovian satellites. By extending our previous study to a 3D case, here we demonstratethat the capture mechanism of a binary asteroid can produce permanent captures of objects byitself which have very similar orbits to irregular Jovian satellites. Some of the captured objectswithout aid of gas drag or other mechanisms present a triplet: semi-major axis, eccentricityand inclination, which is comparable to the already known irregular Jovian objects. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.