857 resultados para Planar robotic manipulator


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops a novel method of actuation for robotic hands. The solution employs Bowden cable routed to each joint as the means by which the finger is actuated. The use of Bowden cable is shown to be feasible for this purpose, even with the changing frictional forces associated with it's use. This method greatly simplifies the control of the hand by removing the coupling between joints, and allows for direct and accurate translation between the joints and the motors driving the Bowden wires. The design also allows for two degrees of freedom (with the same centre of rotation) to be realised in the largest knuckle of each finger, meaning biological finger kinematics are more accurately emulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a novel method of actuation for robotic hands. The solution employs a Bowden cable routed to each joint. The use of a Bowden cable is shown to be feasible for this purpose, ever, with the changing frictional forces associated with it. This method greatly simplifies the control of the hand by removing the coupling between joints, and provides for direct and accurate translation between the joints and the servo motors driving the cables. The design also allows for two degrees of freedom with the same centre of rotation to be realized in the largest knuckle of each finger; thus biological finger kinematics are more closely emulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective is to develop methods that automatically generate kinematic models for the movements of biological and robotic systems. Two methods for the identification of the kinematics are presented. The first method requires the elimination of the displacement variables that cannot be measured while the second method attempts to estimate the changes in these variables. The methods were tested using a planar two-revolute-joint linkage. Results show that the model parameters obtained agree with the actual parameters to within 5%. Moreover, the methods were applied to model head and neck movements in the sagittal plane. The results indicate that these movements are well modeled by a two-revolute-joint system. A spatial three-revolute-joint model was also discussed and tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a method of information fusion involving data captured by both a standard CCD camera and a ToF camera to be used in the detection of the proximity between a manipulator robot and a human. Both cameras are assumed to be located above the work area of an industrial robot. The fusion of colour images and time of light information makes it possible to know the 3D localization of objects with respect to a world coordinate system. At the same time this allows to know their colour information. Considering that ToF information given by the range camera contains innacuracies including distance error, border error, and pixel saturation, some corrections over the ToF information are proposed and developed to improve the results. The proposed fusion method uses the calibration parameters of both cameras to reproject 3D ToF points, expressed in a common coordinate system for both cameras and a robot arm, in 2D colour images. In addition to this, using the 3D information, the motion detection in a robot industrial environment is achieved, and the fusion of information is applied to the foreground objects previously detected. This combination of information results in a matrix that links colour and 3D information, giving the possibility of characterising the object by its colour in addition to its 3D localization. Further development of these methods will make it possible to identify objects and their position in the real world, and to use this information to prevent possible collisions between the robot and such objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a method of information fusion involving data captured by both a standard charge-coupled device (CCD) camera and a time-of-flight (ToF) camera to be used in the detection of the proximity between a manipulator robot and a human. Both cameras are assumed to be located above the work area of an industrial robot. The fusion of colour images and time-of-flight information makes it possible to know the 3D localization of objects with respect to a world coordinate system. At the same time, this allows to know their colour information. Considering that ToF information given by the range camera contains innacuracies including distance error, border error, and pixel saturation, some corrections over the ToF information are proposed and developed to improve the results. The proposed fusion method uses the calibration parameters of both cameras to reproject 3D ToF points, expressed in a common coordinate system for both cameras and a robot arm, in 2D colour images. In addition to this, using the 3D information, the motion detection in a robot industrial environment is achieved, and the fusion of information is applied to the foreground objects previously detected. This combination of information results in a matrix that links colour and 3D information, giving the possibility of characterising the object by its colour in addition to its 3D localisation. Further development of these methods will make it possible to identify objects and their position in the real world and to use this information to prevent possible collisions between the robot and such objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A current trend in the agricultural area is the development of mobile robots and autonomous vehicles for precision agriculture (PA). One of the major challenges in the design of these robots is the development of the electronic architecture for the control of the devices. In a joint project among research institutions and a private company in Brazil a multifunctional robotic platform for information acquisition in PA is being designed. This platform has as main characteristics four-wheel propulsion and independent steering, adjustable width, span of 1,80m in height, diesel engine, hydraulic system, and a CAN-based networked control system (NCS). This paper presents a NCS solution for the platform guidance by the four-wheel hydraulic steering distributed control. The control strategy, centered on the robot manipulators control theory, is based on the difference between the desired and actual position and considering the angular speed of the wheels. The results demonstrate that the NCS was simple and efficient, providing suitable steering performance for the platform guidance. Even though the simplicity of the NCS solution developed, it also overcame some verified control challenges in the robot guidance system design such as the hydraulic system delay, nonlinearities in the steering actuators, and inertia in the steering system due the friction of different terrains. Copyright © 2012 Eduardo Pacincia Godoy et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A flexure hinge is a flexible connector that can provide a limited rotational motion between two rigid parts by means of material deformation. These connectors can be used to substitute traditional kinematic pairs (like bearing couplings) in rigid-body mechanisms. When compared to their rigid-body counterpart, flexure hinges are characterized by reduced weight, absence of backlash and friction, part-count reduction, but restricted range of motion. There are several types of flexure hinges in the literature that have been studied and characterized for different applications. In our study, we have introduced new types of flexures with curved structures i.e. circularly curved-beam flexures and spherical flexures. These flexures have been utilized for both planar applications (e.g. articulated robotic fingers) and spatial applications (e.g. spherical compliant mechanisms). We have derived closed-form compliance equations for both circularly curved-beam flexures and spherical flexures. Each element of the spatial compliance matrix is analytically computed as a function of hinge dimensions and employed material. The theoretical model is then validated by comparing analytical data with the results obtained through Finite Element Analysis. A case study is also presented for each class of flexures, concerning the potential applications in the optimal design of planar and spatial compliant mechanisms. Each case study is followed by comparing the performance of these novel flexures with the performance of commonly used geometries in terms of principle compliance factors, parasitic motions and maximum stress demands. Furthermore, we have extended our study to the design and analysis of serial and parallel compliant mechanisms, where the proposed flexures have been employed to achieve spatial motions e.g. compliant spherical joints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An industrial manipulator equipped with an automatic clay extruder is used to realize a machine that can manufacture additively clay objects. The desired geometries are designed by means of a 3D modeling software and then sliced in a sequence of layers with the same thickness of the extruded clay section. The profiles of each layer are transformed in trajectories for the extruder and therefore for the end-effector of the manipulator. The goal of this thesis is to improve the algorithm for the inverse kinematic resolution and the integration of the routine within the development software that controls the machine (Rhino/Grasshopper). The kinematic model is described by homogeneous transformations, adopting the Denavit-Hartenberg standard convention. The function is implemented in C# and it has been preliminarily tested in Matlab. The outcome of this work is a substantial reduction of the computation time relative to the execution of the algorithm, which is halved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Bachelor Thesis I want to provide readers with tools and scripts for the control of a 7DOF manipulator, backed up by some theory of Robotics and Computer Science, in order to better contextualize the work done. In practice, we will see most common software, and developing environments, used to cope with our task: these include ROS, along with visual simulation by VREP and RVIZ, and an almost "stand-alone" ROS extension called MoveIt!, a very complete programming interface for trajectory planning and obstacle avoidance. As we will better appreciate and understand in the introduction chapter, the capability of detecting collision objects through a camera sensor, and re-plan to the desired end-effector pose, are not enough. In fact, this work is implemented in a more complex system, where recognition of particular objects is needed. Through a package of ROS and customized scripts, a detailed procedure will be provided on how to distinguish a particular object, retrieve its reference frame with respect to a known one, and then allow navigation to that target. Together with technical details, the aim is also to report working scripts and a specific appendix (A) you can refer to, if desiring to put things together.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a fast and precise method to estimate the planar motion of a lidar from consecutive range scans. For every scanned point we formulate the range flow constraint equation in terms of the sensor velocity, and minimize a robust function of the resulting geometric constraints to obtain the motion estimate. Conversely to traditional approaches, this method does not search for correspondences but performs dense scan alignment based on the scan gradients, in the fashion of dense 3D visual odometry. The minimization problem is solved in a coarse-to-fine scheme to cope with large displacements, and a smooth filter based on the covariance of the estimate is employed to handle uncertainty in unconstraint scenarios (e.g. corridors). Simulated and real experiments have been performed to compare our approach with two prominent scan matchers and with wheel odometry. Quantitative and qualitative results demonstrate the superior performance of our approach which, along with its very low computational cost (0.9 milliseconds on a single CPU core), makes it suitable for those robotic applications that require planar odometry. For this purpose, we also provide the code so that the robotics community can benefit from it.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract - Mobile devices in the near future will need to collaborate to fulfill their function. Collaboration will be done by communication. We use a real world example of robotic soccer to come up with the necessary structures required for robotic communication. A review of related work is done and it is found no examples come close to providing a RANET. The robotic ad hoc network (RANET) we suggest uses existing structures pulled from the areas of wireless networks, peer to peer and software life-cycle management. Gaps are found in the existing structures so we describe how to extend some structures to satisfy the design. The RANET design supports robot cooperation by exchanging messages, discovering needed skills that other robots on the network may possess and the transfer of these skills. The network is built on top of a Bluetooth wireless network and uses JXTA to communicate and transfer skills. OSGi bundles form the skills that can be transferred. To test the nal design a reference implementation is done. Deficiencies in some third party software is found, specifically JXTA and JamVM and GNU Classpath. Lastly we look at how to fix the deciencies by porting the JXTA C implementation to the target robotic platform and potentially eliminating the TCP/IP layer, using UDP instead of TCP or using an adaptive TCP/IP stack. We also propose a future areas of investigation; how to seed the configuration for the Personal area network (PAN) Bluetooth protocol extension so a Bluetooth TCP/IP link is more quickly formed and using the STP to allow multi-hop messaging and transfer of skills.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an automated procedure for analysing the significance of each of the many terms in the equations of motion for a serial-link robot manipulator. Significance analysis provides insight into the rigid-body dynamic effects that are significant locally or globally in the manipulator's state space. Deleting those terms that do not contribute significantly to the total joint torque can greatly reduce the computational burden for online control, and a Monte-Carlo style simulation is used to investigate the errors thus introduced. The procedures described are a hybrid of symbolic and numeric techniques, and can be readily implemented using standard computer algebra packages.