922 resultados para Planar antennas


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The space constraints on wireless gadgets is a challenge to antenna designers as the ground plane dimensions of the printed monopole significantly affect s the antenna characteristics.Investigations on ground plane truncations have led to the development of an extremely broad band printed monopole antenna.Omnidirectional radiation characteristics with moderate gain makes this antenna highly suitable for mobile/wireless applications .This thesis also highlights the development of UWB printed antenna along with design equations .Optimum ground plane dimensions for compact antenna applications,folding technique for miniaturization and double folding for dual band application are the other highlights of this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the recent progress and rapid increase in mobile terminals, the design of antennas for small mobile terminals is acquiring great importance. In view of this situation, several design concepts are already been addressed by the scientists and engineers. Compactness and efficiency are the major criteria for mobile terminal antennas. The challenging task of the microwave scientists and engineers is to device compact printed radiating systems having broadband behavior, together with good efficiency. Printed antenna technology has received popularity among antenna scientists after the introduction of microstrip antenna in 1970s. The successors in this kind such as printed monopoles and planar inverted F are also equally important. Scientists and Engineers are trying to explore this technology as a viable coast effective solution for forthcoming microwave revolution. The transmission line perspectives of antennas are very interesting. The concept behind any electromagnetic radiator is simple. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and the orientation of the discontinuities controls the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non resonant structure. Microstrip antennas are suitable for wireless applications due to their low cost, high gain and ease of fabrication. But the major disadvantage of micro strip antennas is their inherent narrow bandwidth. A lot of techniques are introduced by the researchers all over the world to enhance the bandwidth of micro strip patch antennas. The thesis addresses an attempt to enhance the bandwidth of micro strip patch antennas by incorporating impedance matching strip as a part of the micro strip patch antenna. The first part of the thesis deals with the broadband operation of the tilted square slot and polygonal slot loaded square micro strip patch antennas. The resonant mechanisms are clearly mentioned using the simulation and experimental studies. The bandwidth of the polygonal slotted broadband patch antenna is again enhanced by implementing an Lstrip feed mechanism. In the second major part of the thesis, a novel gain enhancement technique for single band and broadband square micro strip patch antennas is achieved by implementing offset stacked configurations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antennas, the key element in wireless communication devices had undergone amazing developments especially in the direction of compactness and safety aspects. In the last two decades, the use of the cellular phones has become the most popular mode of communication across the globe. At the same time, the concerns about the radiation effects have increased in the general public. The main concern of this thesis is to develop a mobile antenna which gives reduced RF interference to the user. The reduction of the power absorbed by the user can tremendously avoid any possible health hazards. The radiation characteristic of a monopole antenna is modified with good radiation characteristics suitable for a mobile handset. The modification is implemented by using different resonating structures which provides reduced radiation along one direction. The direction of less radiation can be changed by modifying the planar antenna structure to a ground folded antenna. This modified structure with excellent radiation characteristic is suitable for modern wireless handheld devices with less user RF interference. Specific Absorption Rate (SAR) is an important parameter for mobile handset. The SAR is estimated for the newly developed antenna for different conditions and discussed in this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstrip antennas are largely used in wireless communication systems due to their low cost, weight, less complex construction and manufacturing, in addition to its versatility. UWB systems have emerged as an alternative to wireless communications over short distances because they offer of higher capacity and lower multipath distortion than other systems with the same purpose. Combining the advantages of microstrip antennas to the characteristics of UWB, it is possible to develop more and more smaller devices, with diverse geometries to operate satisfactorily in these systems. This paper aims to propose alternatives to microstrip antennas for UWB systems operate in the range between 3.1 and 10.6 GHz, with a patch on circular ring. Some techniques are analyzed and employed to increase the bandwidth of proposed antenna: the insertion of a parasitic elements and a rectangular slit in the displaced ground plane. For this, key issues are presented as the basic principles of UWB systems, the fundamental theory of antennas and microstrip antennas. The simulations and experimental characterization of constructed antennas are presented, as well as analysis of parameters such as bandwidth and radiation pattern

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The great interest observed in wireless communication systems has required the development of new configurations of microstrip antennas, because they are easily built and integrated to other microwave circuit components, which is suitable for the construction and development of planar antenna arrays and microwave integrated circuits. This work presents a new configuration of tapered microstrip antenna, which is obtained by impressing U-slots on the conducting patch combined with a transmission line matching circuit that uses an inset length. It is shown that the use of U-slots in the microstrip antenna conducting patch excites new resonating modes, that gives a multiband characteristic for the slotted microstrip antenna, that is suitable for applications in communication systems that operates several frequencies simultaneously. Up to this date, the works reported in the literature deals with the use of Uslotted microstrip rectangular antennas fed by a coaxial probe. The properties of a linear array of microstrip patch tapered antennas are also investigated. The main parameters of the U slotted tapered microstrip antennas are investigated for different sizes and locations of the slots impressed on the conducting patch. The analysis of the proposed antenna is performed by using the resonant cavity and equivalent transmission line methods, in combination with a parametric study, that is conducted by the use of the Ansoft Designer, a commercial computer aided microwave software well known by its accuracy and efficiency. The mentioned methods are used to evaluate the effect in the antennas parameters, like resonant frequency and return loss, produced by variations of the antenna structural parameters, accomplished separately or simultaneously. An experimental investigation is also developed, that consists of the design, construction and measurement of several U slotted microstrip antenna prototypes. Finally, theoretical and simulated results are presented that are in agreement with the measured ones. These results are related to the resonating modes identification and to the determination of the main characteristics of the investigated antennas, such as resonant frequency, return loss, and radiation pattern

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A planar-spiral antenna to be used in an ultrawideband (UWB) radar system for heart activity monitoring is presented. The antenna, named “twin,” is constituted by two spiral dipoles in a compact structure. The reflection coefficient at the feed point of the dipoles is lower than −8 dB over the 3–12 GHz band, while the two-dipoles coupling is about −20 dB. The radiated beam is perpendicular to the plane of the spiral, so the antenna is wearable and it may be an optimal radiator for a medical UWB radar for heart rate detection. The designed antenna has been also used to check some hypotheses about the UWB radar heart activity detection mechanism. The radiation impedance variation, caused by the thorax vibrations associated with heart activity, seems to be the most likely explanation of the UWB radar operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis contributes to the analysis and design of printed reflectarray antennas. The main part of the work is focused on the analysis of dual offset antennas comprising two reflectarray surfaces, one of them acts as sub-reflector and the second one acts as mainreflector. These configurations introduce additional complexity in several aspects respect to conventional dual offset reflectors, however they present a lot of degrees of freedom that can be used to improve the electrical performance of the antenna. The thesis is organized in four parts: the development of an analysis technique for dualreflectarray antennas, a preliminary validation of such methodology using equivalent reflector systems as reference antennas, a more rigorous validation of the software tool by manufacturing and testing a dual-reflectarray antenna demonstrator and the practical design of dual-reflectarray systems for some applications that show the potential of these kind of configurations to scan the beam and to generate contoured beams. In the first part, a general tool has been implemented to analyze high gain antennas which are constructed of two flat reflectarray structures. The classic reflectarray analysis based on MoM under local periodicity assumption is used for both sub and main reflectarrays, taking into account the incident angle on each reflectarray element. The incident field on the main reflectarray is computed taking into account the field radiated by all the elements on the sub-reflectarray.. Two approaches have been developed, one which employs a simple approximation to reduce the computer run time, and the other which does not, but offers in many cases, improved accuracy. The approximation is based on computing the reflected field on each element on the main reflectarray only once for all the fields radiated by the sub-reflectarray elements, assuming that the response will be the same because the only difference is a small variation on the angle of incidence. This approximation is very accurate when the reflectarray elements on the main reflectarray show a relatively small sensitivity to the angle of incidence. An extension of the analysis technique has been implemented to study dual-reflectarray antennas comprising a main reflectarray printed on a parabolic surface, or in general in a curved surface. In many applications of dual-reflectarray configurations, the reflectarray elements are in the near field of the feed-horn. To consider the near field radiated by the horn, the incident field on each reflectarray element is computed using a spherical mode expansion. In this region, the angles of incidence are moderately wide, and they are considered in the analysis of the reflectarray to better calculate the actual incident field on the sub-reflectarray elements. This technique increases the accuracy for the prediction of co- and cross-polar patterns and antenna gain respect to the case of using ideal feed models. In the second part, as a preliminary validation, the proposed analysis method has been used to design a dual-reflectarray antenna that emulates previous dual-reflector antennas in Ku and W-bands including a reflectarray as subreflector. The results for the dualreflectarray antenna compare very well with those of the parabolic reflector and reflectarray subreflector; radiation patterns, antenna gain and efficiency are practically the same when the main parabolic reflector is substituted by a flat reflectarray. The results show that the gain is only reduced by a few tenths of a dB as a result of the ohmic losses in the reflectarray. The phase adjustment on two surfaces provided by the dual-reflectarray configuration can be used to improve the antenna performance in some applications requiring multiple beams, beam scanning or shaped beams. Third, a very challenging dual-reflectarray antenna demonstrator has been designed, manufactured and tested for a more rigorous validation of the analysis technique presented. The proposed antenna configuration has the feed, the sub-reflectarray and the main-reflectarray in the near field one to each other, so that the conventional far field approximations are not suitable for the analysis of such antenna. This geometry is used as benchmarking for the proposed analysis tool in very stringent conditions. Some aspects of the proposed analysis technique that allow improving the accuracy of the analysis are also discussed. These improvements include a novel method to reduce the inherent cross polarization which is introduced mainly from grounded patch arrays. It has been checked that cross polarization in offset reflectarrays can be significantly reduced by properly adjusting the patch dimensions in the reflectarray in order to produce an overall cancellation of the cross-polarization. The dimensions of the patches are adjusted in order not only to provide the required phase-distribution to shape the beam, but also to exploit the crosses by zero of the cross-polarization components. The last part of the thesis deals with direct applications of the technique described. The technique presented is directly applicable to the design of contoured beam antennas for DBS applications, where the requirements of cross-polarisation are very stringent. The beam shaping is achieved by synthesithing the phase distribution on the main reflectarray while the sub-reflectarray emulates an equivalent hyperbolic subreflector. Dual-reflectarray antennas present also the ability to scan the beam over small angles about boresight. Two possible architectures for a Ku-band antenna are also described based on a dual planar reflectarray configuration that provides electronic beam scanning in a limited angular range. In the first architecture, the beam scanning is achieved by introducing a phase-control in the elements of the sub-reflectarray and the mainreflectarray is passive. A second alternative is also studied, in which the beam scanning is produced using 1-bit control on the main reflectarray, while a passive subreflectarray is designed to provide a large focal distance within a compact configuration. The system aims to develop a solution for bi-directional satellite links for emergency communications. In both proposed architectures, the objective is to provide a compact optics and simplicity to be folded and deployed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method to reduce the noise power in far-field pattern without modifying the desired signal is proposed. Therefore, an important signal-to-noise ratio improvement may be achieved. The method is used when the antenna measurement is performed in planar near-field, where the recorded data are assumed to be corrupted with white Gaussian and space-stationary noise, because of the receiver additive noise. Back-propagating the measured field from the scan plane to the antenna under test (AUT) plane, the noise remains white Gaussian and space-stationary, whereas the desired field is theoretically concentrated in the aperture antenna. Thanks to this fact, a spatial filtering may be applied, cancelling the field which is located out of the AUT dimensions and which is only composed by noise. Next, a planar field to far-field transformation is carried out, achieving a great improvement compared to the pattern obtained directly from the measurement. To verify the effectiveness of the method, two examples will be presented using both simulated and measured near-field data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method to reduce truncation errors in near-field antenna measurements is presented. The method is based on the Gerchberg-Papoulis iterative algorithm used to extrapolate band-limited functions and it is able to extend the valid region of the calculated far-field pattern up to the whole forward hemisphere. The extension of the valid region is achieved by the iterative application of a transformation between two different domains. After each transformation, a filtering process that is based on known information at each domain is applied. The first domain is the spectral domain in which the plane wave spectrum (PWS) is reliable only within a known region. The second domain is the field distribution over the antenna under test (AUT) plane in which the desired field is assumed to be concentrated on the antenna aperture. The method can be applied to any scanning geometry, but in this paper, only the planar, cylindrical, and partial spherical near-field measurements are considered. Several simulation and measurement examples are presented to verify the effectiveness of the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compact planar array with parasitic elements is studied to be used in MIMO systems. Classical compact arrays suffer from high coupling which makes correlation and matching efficiency to be worse. A proper matching network improves these lacks although its bandwidth is low and may increase the antenna size. The proposed antenna makes use of parasitic elements to improve both correlation and efficiency. A specific software based on MoM has been developed to analyze radiating structures with several feed points. The array is optimized through a Genetic Algorithm to determine parasitic elements position in order to fulfill different figures of merit. The proposed design provides the required correlation and matching efficiency to have a good performance over a significant bandwidth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes two methods to cancel the effect of two kinds of leakage signals which may be presented when an antenna is measured in a planar near-field range. One method tries to reduce leakage bias errors from the receiver¿s quadrature detector and it is based on estimating the bias constant added to every near-field data sample. Then, that constant is subtracted from the data, removing its undesired effect on the far-field pattern. The estimation is performed by back-propagating the field from the scan plane to the antenna under test plane (AUT) and averaging all the data located outside the AUT aperture. The second method is able to cancel the effect of the leakage from faulty transmission lines, connectors or rotary joints. The basis of this method is also a reconstruction process to determine the field distribution on the AUT plane. Once this distribution is known, a spatial filtering is applied to cancel the contribution due to those faulty elements. After that, a near-field-to-far-field transformation is applied, obtaining a new radiation pattern where the leakage effects have disappeared. To verify the effectiveness of both methods, several examples are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An antenna which has been conceived as a portable system for satellite communications based on the recommendations ITU-R S.580-6 [1] and ITU-R S.465-5 [2] for small antennas, i.e., with a diameter lower than 50 wavelengths, is introduced. It is a planar and a compact structure with a size of 40×40×2 cm. The antenna is formed by an array of 256 printed elements covering a large bandwidth (14.7%) at X-Band. The specification includes transmission (Tx) and reception (Rx) bands simultaneously. The printed antenna has a radiation pattern with a 3dB beamwidth of 5°, over a 31dBi gain, and a dual and an interchangeable circular polarization

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis que tiene por título "Contribución a los arrays de antenas activos en banda X", ha sido desarrollada por el estudiante de doctorado Gonzalo Expósito Domínguez, ingeniero de telecomunicación en el Grupo de Radiación del Departamento de Señales, Sistemas y Radiocomunicaciones de la ETSI de Telecomunicación de la Universidad Politécnica de Madrid bajo la dirección de los doctores Manuel Sierra Castañer y José Manuel Fernández González. Esta tesis contiene un profundo estudio del arte en materia de antenas activas en el campo de apuntamiento electrónico. Este estudio comprende desde los fundamentos de este tipo de antenas, problemas de operación y limitaciones hasta los sistemas actuales más avanzados. En ella se identifican las partes críticas en el diseño y posteriormente se llevan a la práctica con el diseño, simulación y construcción de un subarray de una antena integrada en el fuselaje de un avión para comunicaciones multimedia por satélite que funciona en banda X. El prototipo consta de una red de distribución multihaz de banda ancha y una antena planar. El objetivo de esta tesis es el de aplicar nuevas técnicas al diseño de antenas de apuntamiento electrónico. Es por eso que las contribuciones originales son la aplicación de barreras electromagnéticas entre elementos radiantes para reducir los acoplamientos mutuos en arrays de exploración electrónica y el diseño de redes desfasadoras sencillas en las que no son necesarios complejos desfasadores para antenas multihaz. Hasta la fecha, las barreras electromagnéticas, Electronic Band Gap (EBG), se construyen en sustratos de permitividad alta con el fin de aumentar el espacio disponible entre elementos radiantes y reducir el tamaño de estas estructuras. Sin embargo, la utilización de sustratos de alta permitividad aumenta la propagación por ondas de superficie y con ellas el acoplo mutuo. Utilizando sustratos multicapa y colocando la vía de las estructuras en su borde, en vez de en su centro, se consigue reducir el tamaño sin necesidad de usar sustratos de alta permitividad, reducir la eficiencia de radiación de la antena o aumentar la propagación por ondas de superficie. La última parte de la tesis se dedica a las redes conmutadoras y desfasadoras para antenas multihaz. El diseño de las redes de distribución para antenas son una parte crítica ya que se comportan como un atenuador a la entrada de la cadena receptora, modificando en gran medida la figura de ruido del sistema. Las pérdidas de un desfasador digital varían con el desfase introducido, por ese motivo es necesario caracterizar y calibrar los dispositivos correctamente. Los trabajos presentados en este manuscrito constan de un desfasador reflectivo con un conmutador doble serie paralelo para igualar las pérdidas de inserción en los dos estados y también un conmutador de una entrada y dos salidas cuyos puertos están adaptados en todo momento independientemente del camino del conmutador para evitar las reflexiones y fugas entre redes o elementos radiantes. El tomo finaliza con un resumen de las publicaciones en revistas científicas y ponencias en congresos, nacionales e internacionales, el marco de trabajo en el que se ha desarrollado, las colaboraciones que se han realizado y las líneas de investigación futuras. ABSTRACT This thesis was carried out in the Radiation Group of the Signals, Systems and Radiocomunications department of ETSI de Telecomunicación from Technical University of Madrid. Its title is "Contribution to active array antennas at X band" and it is developed by Gonzalo Expósito Domínguez, Electrical Engineer MsC. under the supervision of Prof. Dr. Manuel Sierra Castañer and Dr. José Manuel Fernández González. This thesis is focused on active antennas, specifically multibeam and electronic steering antenas. In the first part of the thesis a thorough description of the state of the art is presented. This study compiles the fundamentals of this antennas, operation problems and limits, up to the breakthrough applications. The critical design problems are described to use them eventually in the design, simulation and prototyping of an airborne steering array antenna for satellite communication at X band. The main objective of this thesis is to apply new techniques to the design of electronically steering antennas. Therefore the new original contributions are the application of Electromagnetic Band Gap materials (EBG) between radiating elements to reduce the mutual coupling when phase shift between elements exist and phase shifting networks where special characteristics are required. So far, the EBG structures have been constructed with high permitivity substrates in order to increase the available space between radiating elements and reduce the size of the structures. However, the surface wave propagation modes are enhanced and therefore the mutual coupling increases when high permitivity substrates are used. By using multilayered substrates and edge location via, the size is reduced meanwhile low permitivity substrates are used without reducing the radiation efficiency or enhancing the surface propagation modes. The last part of the thesis is focused on the phase shifting distribution networks for multibeam antennas. This is a critical part in the antenna design because the insertion loss in the distribution network behaves as an attenuator located in the first place in a receiver chain. The insertion loss will affect directly to the receiver noise figure and the insertion loss in a phase shifter vary with the phase shift. Therefore the devices must be well characterized and calibrated in order to obtain a properly operation. The work developed in this thesis are a reflective phase shifter with a series-shunt switch in order to make symmetrical the insertion loss for the two states and a complex Single Pole Double Through (SPDT) with matched ports in order to reduce the reflections and leakage between feeding networks and radiating elements. The end of this Ph D. dissertation concludes with a summary of the publications in national and international conferences and scientific journals, the collaborations carried out along the thesis and the future research lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Space Situational Awareness (SSA) program from the European Space Agency (ESA) protects Europe's citizens and their satellite-based services by detecting space hazards. ESA Ground Systems (GS) division is currently designing a phased array radar composed of thousands of radiating elements for future stages of the SSA program [1]. The radar shall guarantee the detection of most of the Low Earth Orbit (LEO) space debris, providing a general map of space junk. While range accuracy is mainly dictated by the radar waveform, the detection and tracking of small objects in LEO regimes is highly dependent on the angular accuracy achieved by the smart phased array antenna, demonstrating the important of the performance of this architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, earth stations have as a common feature the use of large reflector antenna for downloading data from satellites. Large reflectors have impairments such as mechanical complexity, low flexibility and high cost. Thus, the feasibility of other antenna technologies must be evaluated, such as conformal adaptive antennas based on multiple planar active arrays. In the scenery under study, the capability to track several satellites simultaneously, higher flexibility, lower production and maintenance cost, modularity and a more efficient use of the spectrum; are the most important advantage to boost up active antenna arrays over large dishes.