256 resultados para Pichia Pastoris


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A glicerol quinase é uma proteína tetramérica que cataliza a fosforilação do glicerol a glicerol-3-fosfato, composta por quatro subunidades - sua análise eletroforética fornecerá apenas uma banda se for constatada a sua pureza num gel não desnaturante - e sua reação com o glicerol é dependente de magnésio e de ATP. A eletroforese de proteínas utiliza como suporte um gel de poliacrilamida, que é formado pela polimerização de monômeros de acrilamida ao longo da sua cadeia e ligações cruzadas de cadeias pela inclusão de um co-monômero bifuncional apropriado, usualmente a N,N’ – metileno-bis-acrilamida ou apenas Bis . A eletroforese de proteínas mais comum é a que utiliza SDS para um gel de poliacrilamida desnaturante. O SDS é um sal chamado Dodecil Sulfato de Sódio que tem por característica se ligar a cadeia proteína nos resíduos de aminoácidos apolares, deixando com a carga negativa, sendo assim, toda proteína fica com carga total negativa, migrando para o anodo na eletroforese. As técnicas de purificação utilizadas foram ultrafiltração e precipitação com ácido tricloro acético, etanol gelado e sulfato de amônio. A dupla precipitação com etanol resultou na recuperação de maior quantidade de proteínas. A coloração do gel com prata foi mais sensível do que Comassie blue. O gel de eletroforese mostrou quatro bandas, correspondentes às quatro subunidades da glicerol quinase quando revelados com prata em gel de SDS-PAGE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O glicerol é um importante subproduto de processos fermentativos. Em algumas bebidas alcoólicas, como vinhos e vodcas contribuem com seu sabor tornando-a aceitável para o consumidor. Com o incentivo na produção de biocombustíveis, a disponibilidade do glicerol deve aumentar, já que é o principal subproduto gerado na produção do Biodiesel. A sua presença em alguns alimentos, pode identificar presença de microrganismos, já que pode ser uma fonte de carbono para eles. Devido às inúmeras utilizações do glicerol para diversos tipos de indústrias, a dosagem do glicerol se torna cada vez mais importante e rotineira. Isso incentiva novas pesquisas de métodos de doseamento. A enzima GK é presente em vários microrganismos e converte o glicerol em glicerol-3-fosfato. Com a utilização da enzima Glicerol -3- fofato desidrogenase, o glicerol - 3 – fosfato é convertido a di-hidroxi-acetona fosfato com a produção de NADH. Este pode ser quantificado através do espectrofotômetro, tornando-se um rápido e eficiente método para doseamento. A levedura recombinante Pichia pastoris foi escolhida pois foi inserida no seu DNA, o Gene GUT1 que expressa a GK em Saccharomyces cerevisiae. Além disso, a expressão enzimática é extracelular, diminuindo etapas no processo de isolamento da enzima GK. O trabalho consistiu em otimizar a produção de GK expressa pela levedura recombinante Pichia pastoris por meio da adição de oxigênio no biorreator de fermentação em escala de 2,5 L. Os resultados do presente estudo indicam o ponto ótimo de oxigenação em fermentador nos parâmetros estabelecidos é de 2,0 lpm tanto para a produção de enzimática quanto para biomassa formada

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human heteromeric amino acid transporters (HATs) play key roles in renal and intestinal re-absorption, cell redox balance and tumor growth. These transporters are composed of a heavy and a light subunit, which are connected by a disulphide bridge. Heavy subunits are the two type II membrane N-glycoproteins rBAT and 4F2hc, while L-type amino acid transporters (LATs) are the light and catalytic subunits of HATs. We tested the expression of human 4F2hc and rBAT as well as seven light subunits in the methylotrophic yeast Pichia pastoris. 4F2hc and the light subunit LAT2 showed the highest expression levels and yields after detergent solubilization. Co-transformation of both subunits in Pichia cells resulted in overexpression of the disulphide bridge-linked 4F2hc/LAT2 heterodimer. Two sequential affinity chromatography steps were applied to purify detergent-solubilized heterodimers yielding ~1mg of HAT from 2l of cell culture. Our results indicate that P. pastoris is a convenient system for the expression and purification of human 4F2hc/LAT2 for structural studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pichia pastoris, a methylotrophic yeast, is an established system for the production of heterologous proteins, particularly biopharmaceuticals and industrial enzymes. To maximise and optimise the production of recombinant products, recent molecular research has focused on numerous issues including the design of expression vectors, optimisation of gene copy number, co-expression of secretory proteins such as chaperones, engineering of glycosylation and secretory pathways, etc. However, the physiological effects of different cultivation strategies are often difficult to separate from the molecular effects of the gene construct (e.g., cellular stress through over-expression or incorrect post-translational processing). Hence, overall system optimisation is difficult, even though it is urgently required in order to describe and understand the behaviour of new molecular constructs. This review focuses on particular aspects of recombinant protein production related to variations in biomass growth and their implications for strain design and screening, as well as on the concept of rational comparisons between cultivation systems for the development of specific production processes in bioreactors. The relationship between specific formation rates of secreted recombinant proteins, qp, and specific growth rates, μ, has been analysed in a conceptual attempt to compare different systems, particularly those based on AOX1/methanol and GAP/glucose, and this has now evolved into a pivotal concept for bioprocess engineering of P. pastoris.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytosolic and peroxisomal enzymes necessary for methanol assimilation are synthesized when Pichia pastoris is grown in methanol. Upon adaptation from methanol to a glucose environment, these enzymes are rapidly and selectively sequestered and degraded within the yeast vacuole. Sequestration begins when the vacuole changes shape and surrounds the peroxisomes. The opposing membranes then fuse, engulfing the peroxisome. In this study, we have characterized a mutant cell line (glucose-induced selective autophagy), gsa7, which is defective in glucose-induced selective autophagy of peroxisomes, and have identified the GSA7 gene. Upon glucose adaptation, gsa7 cells were unable to degrade peroxisomal alcohol oxidase. We observed that the peroxisomes were surrounded by the vacuole, but complete uptake into the vacuole did not occur. Therefore, we propose that GSA7 is not required for initiation of autophagy but is required for bringing the opposing vacuolar membranes together for homotypic fusion, thereby completing peroxisome sequestration. By sequencing the genomic DNA fragment that complemented the gsa7 phenotype, we have found that GSA7 encodes a protein of 71 kDa (Gsa7p) with limited sequence homology to a family of ubiquitin-activating enzymes, E1. The knockout mutant gsa7Δ had an identical phenotype to gsa7, and both mutants were rescued by an epitope-tagged Gsa7p (Gsa7-hemagglutinin [HA]). In addition, a GSA7 homolog, APG7, a protein required for autophagy in Saccharomyces cerevisiae, was capable of rescuing gsa7. We have sequenced the human homolog of GSA7 and have shown many regions of identity between the yeast and human proteins. Two of these regions align to the putative ATP-binding domain and catalytic site of the family of ubiquitin activating enzymes, E1 (UBA1, UBA2, and UBA3). When either of these sites was mutated, the resulting mutants [Gsa7(ΔATP)-HA and Gsa7(C518S)-HA] were unable to rescue gsa7 cells. We provide evidence to suggest that Gsa7-HA formed a thio-ester linkage with a 25–30 kDa protein. This conjugate was not observed in cells expressing Gsa7(ΔATP)-HA or in cells expressing Gsa7(C518S)-HA. Our results suggest that this unique E1-like enzyme is required for homotypic membrane fusion, a late event in the sequestration of peroxisomes by the vacuole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the cloning and characterization of Pichia pastoris PEX19 by complementation of a peroxisome-deficient mutant strain. Import of peroxisomal targeting signal 1- and 2-containing peroxisomal matrix proteins is defective in pex19 mutants. PEX19 encodes a hydrophilic 299-amino acid protein with sequence similarity to Saccharomyces cerevisiae Pex19p and human and Chinese hamster PxF, all farnesylated proteins, as well as hypothetical proteins from Caenorhabditis elegans and Schizosaccharomyces pombe. The farnesylation consensus is conserved in PpPex19p but dispensable for function and appears unmodified under the conditions tested. Pex19p localizes predominantly to the cytosolic fraction. Biochemical and two-hybrid analyses confirmed that Pex19p interacts with Pex3p, as seen in S. cerevisiae, but unexpectedly also with Pex10p. Two-hybrid analysis demonstrated that the amino-terminal 42 amino acids of Pex19p interact with the carboxyl-terminal 335 amino acids of Pex3p. In addition, the extreme carboxyl terminus of Pex19p (67 amino acids) is required for interaction with the amino-terminal 380 amino acids of Pex10p. Biochemical and immunofluorescence microscopy analyses of pex19Δ cells identified the membrane protein Pex3p in peroxisome remnants that were not previously observed in S. cerevisiae. These small vesicular and tubular (early) remnants are morphologically distinct from other Pppex mutant (late) remnants, suggesting that Pex19p functions at an early stage of peroxisome biogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pichia pastoris PEX17 was cloned by complementation of a peroxisome-deficient strain obtained from a novel screen for mutants disrupted in the localization of a peroxisomal membrane protein (PMP) reporter. PEX17 encodes a 267-amino-acid protein with low identity (18%) to the previously characterized Saccharomyces cerevisiae Pex17p. Like ScPex17p, PpPex17p contains a putative transmembrane domain near the amino terminus and two carboxyl-terminal coiled-coil regions. PpPex17p behaves as an integral PMP with a cytosolic carboxyl-terminal domain. pex17Δ mutants accumulate peroxisomal matrix proteins and certain integral PMPs in the cytosol, suggesting a critical role for Pex17p in their localization. Peroxisome remnants were observed in the pex17Δ mutant by morphological and biochemical means, suggesting that Pex17p is not absolutely required for remnant formation. Yeast two-hybrid analysis demonstrated that the carboxyl terminus of Pex19p was required for interaction with Pex17p lacking the carboxyl-terminal coiled-coil domains. Biochemical evidence confirmed the interaction between Pex19p and Pex17p. Additionally, Pex17p cross-linked to components of the peroxisome targeting signal–receptor docking complex, which unexpectedly contained Pex3p. Our evidence suggests the existence of distinct subcomplexes that contain separable pools of Pex3p, Pex19p, Pex17p, Pex14p, and the peroxisome targeting signal receptors. These distinct pools may serve different purposes for the import of matrix proteins or PMPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induction of the expression of an algal phytochrome cDNA in the methylotrophic yeast Pichia pastoris led to time-dependent formation of photoactive holophytochrome without the addition of exogenous bilins. Both in vivo and in vitro difference spectra of this phytochromic species are very similar to those of higher plant phytochrome A, supporting the conclusion that this species possesses a phytochromobilin prosthetic group. Zinc blot analyses confirm that a bilin chromophore is covalently bound to the algal phytochrome apoprotein. The hypothesis that P. pastoris contains phytochromobilin synthase, the enzyme that converts biliverdin IX alpha to phytochromobilin, was also addressed in this study. Soluble extracts from P. pastoris were able to convert biliverdin to a bilin pigment, which produced a native difference spectrum upon assembly with oat apophytochrome A. HPLC analyses confirm that biliverdin is converted to both 3E- and 3Z-isomers of phytochromobilin. These investigations demonstrate that the ability to synthesize phytochromobilin is not restricted to photosynthetic organisms and support the hypothesis of a more widespread distribution of the phytochrome photoreceptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human CD81 (hCD81) protein has been recombinantly produced in the methylotrophic yeast Pichia pastoris. The purified protein, produced at a yield of 1.75 mg/L of culture, was shown to interact with Hepatitis C virus E2 glycoprotein. Immunofluorescent and flow cytometric staining of P. pastoris protoplasts with monoclonal antibodies specific for the second extracellular loop (EC2) of hCD81 confirmed the antigenicity of the recombinant molecule. Full-length hCD81 was solubilized with an array of detergents and subsequently characterized using circular dichroism (CD) and analytical ultracentrifugation. These biophysical techniques confirmed that the protein solution comprises a homogenous species possessing a highly-defined alpha-helical secondary structure. The predicted alpha-helical content of the protein from CD analysis (77.1%) fits remarkably well with what would be expected (75.2%) from knowledge of the protein sequence together with the data from the crystal structure of the second extracellular loop. This study represents the first biophysical characterization of a full-length recombinant tetraspanin, and opens the way for structure-activity analyses of this ubiquitous family of transmembrane proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The optimisation and scale-up of process conditions leading to high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences. Typical experiments rely on varying selected parameters through repeated rounds of trial-and-error optimisation. To rationalise this, several groups have recently adopted the 'design of experiments' (DoE) approach frequently used in industry. Studies have focused on parameters such as medium composition, nutrient feed rates and induction of expression in shake flasks or bioreactors, as well as oxygen transfer rates in micro-well plates. In this study we wanted to generate a predictive model that described small-scale screens and to test its scalability to bioreactors. Results Here we demonstrate how the use of a DoE approach in a multi-well mini-bioreactor permitted the rapid establishment of high yielding production phase conditions that could be transferred to a 7 L bioreactor. Using green fluorescent protein secreted from Pichia pastoris, we derived a predictive model of protein yield as a function of the three most commonly-varied process parameters: temperature, pH and the percentage of dissolved oxygen in the culture medium. Importantly, when yield was normalised to culture volume and density, the model was scalable from mL to L working volumes. By increasing pre-induction biomass accumulation, model-predicted yields were further improved. Yield improvement was most significant, however, on varying the fed-batch induction regime to minimise methanol accumulation so that the productivity of the culture increased throughout the whole induction period. These findings suggest the importance of matching the rate of protein production with the host metabolism. Conclusion We demonstrate how a rational, stepwise approach to recombinant protein production screens can reduce process development time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have produced human fibroblast growth factor 1 (hFGF1) in the methylotrophic yeast Pichia pastoris in order to obtain the large amounts of active protein required for subsequent functional and structural characterization. Four constructs were made to examine both intracellular and secreted expression, with variations in the location of the His6 tag at either end of the peptide. hFGF1 could be produced from all four constructs in shake flasks, but production was optimized by growing only the highest-yielding of these strains, which produced hFGF1 intracellularly, under tightly controlled conditions in a 3 L fermentor. One hundred and eight milligrams of pure protein was achieved per liter culture (corresponding to 0.68 mg of protein per gram of wet cells), the function of which was verified using NIH 3T3 cell cultures. This is a 30-fold improvement over previously reported yields of full-length hFGF1. © 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Having decided on yeast as a production host, the choice of species is often the first question any researcher new to the field will ask. With over 500 known species of yeast to date, this could pose a significant challenge. However, in reality, only very few species of yeast have been employed as host organisms for the production of recombinant proteins. The two most widely used, Saccharomyces cerevisiae and Pichia pastoris, are compared and contrasted here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last 15 years, 80% of all recombinant proteins reported in the literature were produced in the bacterium, Escherichia coli, or the yeast, Pichia pastoris. Nonetheless, developing effective general strategies for producing recombinant eukaryotic membrane proteins in these organisms remains a particular challenge. Using a validated screening procedure together with accurate yield quantitation, we therefore wished to establish the critical steps contributing to high yields of recombinant eukaryotic membrane protein in P. pastoris. Whilst the use of fusion partners to generate chimeric constructs and directed mutagenesis have previously been shown to be effective in bacterial hosts, we conclude that this approach is not transferable to yeast. Rather, codon optimization and the preparation and selection of high-yielding P. pastoris clones are effective strategies for maximizing yields of human aquaporins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pichia pastoris is a widely-used host for recombinant protein production. Initial screening for both suitable clones and optimum culture conditions is typically carried out in multi-well plates. This is followed by up-scaling either to shake-flasks or continuously stirred tank bioreactors. A particular problem in these formats is foaming, which is commonly prevented by the addition of chemical antifoaming agents. Intriguingly, antifoams are often added without prior consideration of their effect on the yeast cells, the protein product or the influence on downstream processes such as protein purification. In this study we characterised, for the first time, the effects of five commonly-used antifoaming agents on the total amount of recombinant green fluorescent protein (GFP) secreted from shake-flask cultures of this industrially-relevant yeast.