999 resultados para Physics, Radiation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the emission of gravitational radiation in the context of a previously studied metric nonsymmetric theory of gravitation. The part coming from the symmetric part of the metric coincides with the mass quadrupole moment result of general relativity. The one associated to the antisymmetric part of the metric involves the dipole moment of the fermionic charge of the system. The results are applied to binary star systems and the decrease of the period of the elliptical motion is calculated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study quasinormal modes and scattering properties via calculation of the S matrix for scalar and electromagnetic fields propagating in the background of spherically symmetric and axially symmetric traversable Lorentzian wormholes of a generic shape. Such wormholes are described by the general Morris-Thorne ansatz. The properties of quasinormal ringing and scattering are shown to be determined by the behavior of the wormhole's shape function b(r) and shift factor Phi(r) near the throat. In particular, wormholes with the shape function b(r), such that b(dr) approximate to 1, have very long-lived quasinormal modes in the spectrum. We have proved that the axially symmetric traversable Lorentzian wormholes, unlike black holes and other compact rotating objects, do not allow for superradiance. As a by-product we have shown that the 6th order WKB formula used for scattering problems of black or wormholes gives quite high accuracy and thus can be used for quite accurate calculations of the Hawking radiation processes around various black holes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new target station providing Fourier transform infrared (FT-IR) spectroscopy and residual gas analysis (RGA) for in situ observation of ion-induced changes in polymers has been installed at the GSI Helmholtz Centre for Heavy Ion Research. The installations as well as first in situ measurements at room temperature are presented here. A foil of polyimide Kapton HN (R) was irradiated with 1.1 GeV Au ions. During irradiation several in situ FT-IR spectra were recorded. Simultaneously outgassing degradation products were detected with the RGA. In the IR spectra nearly all bands decrease due to the degradation of the molecular structure. In the region from 3000 to 2700 cm(-1) vibration bands of saturated hydrocarbons not reported in literature so far became visible. The outgassing experiments show a mixture of C(2)H(4), CO, and N(2) as the main outgassing components of polyimide. The ability to combine both analytical methods and the opportunity to measure a whole fluence series within a single experiment show the efficiency of the new setup. (C) 2011 American Institute of Physics. [doi:10.1063/1.3571301]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomic clouds prepared in ""timed Dicke"" states, i.e. states where the phase of the oscillating atomic dipole moments linearly varies along one direction of space, are efficient sources of superradiant light emission [Scully et al., Phys. Rev. Lett. 96, 010501 (2006)]. Here, we show that, in contrast to previous assertions, timed Dicke states are not the states automatically generated by incident laser light. In reality, the atoms act back on the driving field because of the finite refraction of the cloud. This leads to nonuniform phase shifts, which, at higher optical densities, dramatically alter the cooperative scattering properties, as we show by explicit calculation of macroscopic observables, such as the radiation pressure force.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cooperative scattering of light by an extended object such as an atomic ensemble or a dielectric sphere is fundamentally different from scattering from many pointlike scatterers such as single atoms. Homogeneous distributions tend to scatter cooperatively, whereas fluctuations of the density distribution increase the disorder and suppress cooperativity. In an atomic cloud, the amount of disorder can be tuned via the optical thickness, and its role can be studied via the radiation force exerted by the light on the atomic cloud. Monitoring cold (87)Rb atoms released from a magneto-optical trap, we present the first experimental signatures of radiation force reduction due to cooperative scattering. The results are in agreement with an analytical expression interpolating between the disorder and the cooperativity-dominated regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As insects increase in radiotolerance as they develop and usually several developmental stages of the pest may be present in the fresh shipped commodity, it is important to know the radiation susceptibility of the stages of the target insect before the establishment of ionizing radiation quarantine treatments. This study was performed to determine the radiotolerance of eggs of the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), to gamma radiation. This species is considered as one of the most serious worldwide pests for temperate fruits, especially peaches. Eggs (12 h old) were exposed to 0 (control), 25, 35, 50, 75, 100, 125 and 150 Gy of gamma radiation. Surviving larvae were allowed to feed on an artificial diet. Three days after irradiation, it was verified that larvae`s cephalic capsules were significantly affected by gamma radiation, and the estimated mean LD(90) and LD(99) were 66.3 Gy and 125.8 Gy, respectively. Oriental fruit moth eggs revealed to be quite radiosensitive and very low doses as 50 Gy were sufficient to disrupt G. molesta embryogenesis. At 25 Gy, only male adults originated from the surviving larvae and, after mating with untreated fertile females, shown to be sterile. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the gamma radiation effects on green tea odor volatiles in green tea at doses of 0, 5, 10, 15 and 20 kGy. The volatile organic compounds were extracted by hydrodistillation and analyzed by GC/MS. The green tea had a large influence on radiation effects, increasing the identified volatiles in relation to control samples. The dose of 10 kGy was responsible to form the majority of new odor compounds following by 5 and 20 kGy. However, the dose of 5 kGy was the dose that degraded the majority of volatiles in non-irradiated samples, following by 20 kGy. The dose of 15 kGy showed has no effect on odor volatiles. The gamma radiation, at dose up to 20 kGy, showed statistically no difference between irradiated and non irradiated green tea on odors compounds. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to protect food from pathogenic microorganisms as well as increase its shelf-life, while keeping sensorial properties (e.g., odor and taste), which are important properties required by spice buyers, it is necessary to analyze volatile formation from irradiation of medicinal and food herbs. Possible changes in the odor of these herbs are evaluated by characterizing different radiation doses and effects on sensorial properties, in order to allow better application of the irradiation technology. The aim of the present study was to analyze volatile formation on cinnamon (Laurus cinnamomum) samples after gamma irradiation. These samples were irradiated into plastic packages using a (60)Co facility. Radiation doses applied were 0, 5, 10, 15, 20 and 25 kGy. For the analysis of the samples, solid-phase microextraction (SPME) was applied, while for the analysis of volatile compounds, CG/MS. Spice irradiation showed the highest decrease in volatile compounds. For L. cinnamomum, the irradiation decreased volatile compounds by nearly 56% and 89.5%, respectively, comparing to volatile from a sample which had not been previously irradiated. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Papain is a proteolytic enzyme that has been widely used as debridement agent for scars and wound healing treatment. However, papain presents low stability, which limits its use to extemporaneous or short shelf-life formulations. The purpose of this study was to entrap papain into a polymeric matrix in order to obtain a drug delivery system that could be used as medical device. Since these systems must be sterile, gamma radiation is an interesting option and presents advantages in relation to conventional agents: no radioactive residues are formed: the product can be sterilized inside the final packaging and has an excellent reliability. The normative reference for the establishment of the sterilizing dose determines 25 kGy as the inactivation dose for viable microorganisms. A silicone dispersion was selected to prepare membranes containing 2% (w/w) papain. Irradiated and non-irradiated membranes were simultaneously assessed in order to verify whether gamma radiation interferes with the drug-releasing profile. Results showed that irradiation does not affect significantly papain release and its activity. Therefore papain shows radioresistance in the irradiation conditions applied. In conclusion, gamma radiation can be easily used as sterilizing agent without affecting the papain release profile and its activity onto the biocompatible device is studied. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gamma-radiolysis of poly(tetrafluoroethylene-co-perfluoromethyl vinyl ether) (TFE/PMVE) was investigated using chemical and mechanical analyses. The polymer was found to form an insoluble network with a dose of gelation of 15.8 kGy. Tensile and glass transition temperature measurements indicated the predominance of crosslinking, with optimal elastomeric properties reached in the dose range of 120 to 200 kGy. Photoacoustic FTIR spectroscopy CPAS) showed the formation of new carboxylic acid end groups on irradiation. These new end groups were shown to decrease the thermal oxidative stability of the crosslinked network as determined by thermal gravimetric analysis. Electron spin resonance (ESR) studies of the polymer at 77 K indicated the presence of radical precursors. A G-value of 1.1 was determined for radical production at 77 K. Comparison of radical concentrations for a copolymer with a different mole ratio of PMVE, indicated that the PMVE units contribute to scission reactions. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal and gamma-irradiation induced curing of two phenylethynyl terminated composite resin systems, DFB/BPF and PETI5A, was investigated. Thermal curing of these matrix resin samples was performed at a temperature of 360 degrees C, gamma irradiation of the samples was conducted at 300 degrees C at a dose rate of 2.2 kGy h(-1). The reaction and subsequent loss of ethynyl groups in the resins for both cure methods was demonstrated by observing the decrease of the 2215 cm(-1) peak in the Raman spectra of the resins. Fully cured resin samples were found to have glass transition temperatures of 244-246 degrees C and 278-280 degrees C for DFB/BPF and PETI5A respectively. Similar relationships between T-g and fractional conversion were observed in both resins. The apparent polymerization rate, R-p, for thermal cure at 360 degrees C, was found to be 4.79 x 10(-2)% s(-1) in PETI5A and 3.22 x 10(-2)% s(-1) in DFB/BPF. Catastrophic degradation under nitrogen was observed to commence near 450 degrees C and 530 degrees C, with 5% weight losses occurring at 455 degrees C and 540 degrees C for DFB/BPF and PETI5A respectively. Gamma radiation induced cure at 300 degrees C was shown to be feasible, with full cure being reached with doses of 40 kGy for DFB/BPF and 100 kGy for PETI5A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiation dose calculations in nuclear medicine depend on quantification of activity via planar and/or tomographic imaging methods. However, both methods have inherent limitations, and the accuracy of activity estimates varies with object size, background levels, and other variables. The goal of this study was to evaluate the limitations of quantitative imaging with planar and single photon emission computed tomography (SPECT) approaches, with a focus on activity quantification for use in calculating absorbed dose estimates for normal organs and tumors. To do this we studied a series of phantoms of varying complexity of geometry, with three radionuclides whose decay schemes varied from simple to complex. Four aqueous concentrations of (99m)Tc, (131)I, and (111)In (74, 185, 370, and 740 kBq mL(-1)) were placed in spheres of four different sizes in a water-filled phantom, with three different levels of activity in the surrounding water. Planar and SPECT images of the phantoms were obtained on a modern SPECT/computed tomography (CT) system. These radionuclides and concentration/background studies were repeated using a cardiac phantom and a modified torso phantom with liver and ""tumor"" regions containing the radionuclide concentrations and with the same varying background levels. Planar quantification was performed using the geometric mean approach, with attenuation correction (AC), and with and without scatter corrections (SC and NSC). SPECT images were reconstructed using attenuation maps (AM) for AC; scatter windows were used to perform SC during image reconstruction. For spherical sources with corrected data, good accuracy was observed (generally within +/- 10% of known values) for the largest sphere (11.5 mL) and for both planar and SPECT methods with (99m)Tc and (131)I, but were poorest and deviated from known values for smaller objects, most notably for (111)In. SPECT quantification was affected by the partial volume effect in smaller objects and generally showed larger errors than the planar results in these cases for all radionuclides. For the cardiac phantom, results were the most accurate of all of the experiments for all radionuclides. Background subtraction was an important factor influencing these results. The contribution of scattered photons was important in quantification with (131)I; if scatter was not accounted for, activity tended to be overestimated using planar quantification methods. For the torso phantom experiments, results show a clear underestimation of activity when compared to previous experiment with spherical sources for all radionuclides. Despite some variations that were observed as the level of background increased, the SPECT results were more consistent across different activity concentrations. Planar or SPECT quantification on state-of-the-art gamma cameras with appropriate quantitative processing can provide accuracies of better than 10% for large objects and modest target-to-background concentrations; however when smaller objects are used, in the presence of higher background, and for nuclides with more complex decay schemes, SPECT quantification methods generally produce better results. Health Phys. 99(5):688-701; 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Recently developed portable dental X-ray units increase the mobility of the forensic odontologists and allow more efficient X-ray work in a disaster field, especially when used in combination with digital sensors. This type of machines might also have potential for application in remote areas, military and humanitarian missions, dental care of patients with mobility limitation, as well as imaging in operating rooms. Objective: To evaluate radiographic image quality acquired by three portable X-ray devices in combination with four image receptors and to evaluate their medical physics parameters. Materials and methods: Images of five samples consisting of four teeth and one formalin-fixed mandible were acquired by one conventional wall-mounted X-ray unit, MinRay (R) 60/70 kVp, used as a clinical standard, and three portable dental X-ray devices: AnyRay (R) 60 kVp, Nomad (R) 60 kVp and Rextar (R) 70 kVp, in combination with a phosphor image plate (PSP), a CCD, or a CMOS sensor. Three observers evaluated images for standard image quality besides forensic diagnostic quality on a 4-point rating scale. Furthermore, all machines underwent tests for occupational as well as patient dosimetry. Results: Statistical analysis showed good quality imaging for all system, with the combination of Nomad (R) and PSP yielding the best score. A significant difference in image quality between the combination of the four X-ray devices and four sensors was established (p < 0.05). For patient safety, the exposure rate was determined and exit dose rates for MinRay (R) at 60 kVp, MinRay (R) at 70 kVp, AnyRay (R), Nomad (R) and Rextar (R) were 3.4 mGy/s, 4.5 mGy/s, 13.5 mGy/s, 3.8 mGy/s and 2.6 mGy/s respectively. The kVp of the AnyRay (R) system was the most stable, with a ripple of 3.7%. Short-term variations in the tube output of all the devices were less than 10%. AnyRay (R) presented higher estimated effective dose than other machines. Occupational dosimetry showed doses at the operator`s hand being lowest with protective shielding (Nomad (R): 0.1 mu Gy). It was also low while using remote control (distance > 1 m: Rextar (R) < 0.2 mu Gy, MinRay (R) < 0.1 mu Gy). Conclusions: The present study demonstrated the feasibility of three portable X-ray systems to be used for specific indications, based on acceptable image quality and sufficient accuracy of the machines and following the standard guidelines for radiation hygiene. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study of the high energy radiation resistance to formation of radicals in two pairs of polymers is reported. In one pair of polymers the phenyl groups containing the imide rings are separated by an ether linkage and in the other pair they are separated by an hexafluoroisopropylidine group. Two of the polymers contained aromatic amine units linked through an ether linkage and the other two polymers contained a trifluoromethyl biphenyl diamine. The polymers were shown to retain a high level of transparency in the visible region following radiolysis to doses as high as 8 Gy. ESR studies of the resistance to radical formation on radiolysis. at 77 K revealed that the polymers containing ether linkages were more stable than their fluorinated analogues, but all were less stable than Kapton (R). (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the connection between quantum interference effects in optical beams and radiation fields emitted from atomic systems. We illustrate this connection by a study of the first- and second-order correlation functions of optical fields and atomic dipole moments. We explore the role of correlations between the emitting systems and present examples of practical methods to implement two systems with non-orthogonal dipole moments. We also derive general conditions for quantum interference in a two-atom system and for a control of spontaneous emission. The relation between population trapping and dark states is also discussed. Moreover, we present quantum dressed-atom models of cancellation of spontaneous emission, amplification on dark transitions, fluorescence quenching and coherent population trapping.