946 resultados para Physico-mineral-chemical correlation to ancient texts
Resumo:
"Work performed under Contract No. AT(30-1)-647"--p.2 of cover.
Resumo:
Mode of access: Internet.
Resumo:
At head of title: Harper's Stereotype Edition, uniform with Hooper's Medical Dictionary.
Resumo:
Mode of access: Internet.
Resumo:
Library lacks atlas.
Resumo:
"August 1, 1990"--Pt. 2.
Resumo:
The plate is bound in after pl.12, v.2.
Resumo:
"List of works consulted": p. [xxiii]
Resumo:
Background: Infraclavicular brachial plexus nerve blockade (ICNB) is a very common anesthetic procedure performed for upper extremity surgery at the elbow and distally, however the rate of adequate analgesia is variable among patients. Ultrasound guidance (US) has not been demonstrated to increase the success rate of ICNB when compared to nerve stimulator (NS) guidance. Combined US and NS guided ICNB have not been reported, although there is a call for more trials comparing the two techniques. This study was performed to observe if a specific anatomic region near the axillary artery of the brachial plexus identified by finger flexion with nerve stimulation results in improved postoperative analgesia. Method: Patients undergoing elective elbow arthroplasty received a postoperative ICNB. The angle of the nerve stimulator needle tip and the radial distance from the center of the arterial lumen at which an optimal finger flexion twitch response was observed were measured with ultrasound imaging. Pain scores and postoperative opioid dosages on discharge from the post anesthesia care unit and at 24 hours after surgery were recorded. Results: 11 patients enrolled in this study. Adequate finger flexion response to nerve stimulation that resulted in complete analgesia was more frequently observed when the needle was located in the postero-superior quadrant in relation to the axillary artery. Identifying a specific point near the brachial plexus in relation to the artery that consistently provides superior analgesia is desirable and would lead to improved analgesia and faster onset time of nerve blockade and would reduce the need for other approaches for brachial plexus blockade with their associated disadvantages.
Resumo:
The nanocomposites of general layered clays and metal sulfides could be produced from reactions of the layered clay aqueous suspensions and water-soluble metal-thiourea complexes. The clay could be saponite, montmorillonite, hectorite and laponite, while the metal sulfide could be cobalt sulfide, nickel sulfide, zinc sulfide, cadmium sulfide, and lead sulfide. In the nanocomposites, the clay could be incorporated with the metal sulfide pillars and metal sulfide nanoparticles. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The mammalian binaural cue of interaural time difference (ITD) and cross-correlation have long been used to determine the point of origin of a sound source. The ITD can be defined as the different points in time at which a sound from a single location arrives at each individual ear [1]. From this time difference, the brain can calculate the angle of the sound source in relation to the head [2]. Cross-correlation compares the similarity of each channel of a binaural waveform producing the time lag or offset required for both channels to be in phase with one another. This offset corresponds to the maximum value produced by the cross-correlation function and can be used to determine the ITD and thus the azimuthal angle θ of the original sound source. However, in indoor environments, cross-correlation has been known to have problems with both sound reflections and reverberations. Additionally, cross-correlation has difficulties with localising short-term complex noises when they occur during a longer duration waveform, i.e. in the presence of background noise. The crosscorrelation algorithm processes the entire waveform and the short-term complex noise can be ignored. This paper presents a technique using thresholding which enables higher-localisation abilities for short-term complex sounds in the midst of background noise. To determine the success of this thresholding technique, twenty-five sounds were recorded in a dynamic and echoic environment. The twenty-five sounds consist of hand-claps, finger-clicks and speech. The proposed technique was compared to the regular cross-correlation function for the same waveforms, and an average of the azimuthal angles determined for each individual sample. The sound localisation ability for all twenty-five sound samples is as follows: average of the sampled angles using cross-correlation: 44%; cross-correlation technique with thresholding: 84%. From these results, it is clear that this proposed technique is very successful for the localisation of short-term complex sounds in the midst of background noise and in a dynamic and echoic indoor environment.
Resumo:
B:Glioblastoma multiforme(GBM) is one of the most prevalent and aggressive malignant primary brain tumors in adult patients. 64CuCl2 is an innovative radiopharmaceutical investigated as theranostic agent in GBM patients. The therapeutic scheme is still under evaluation, therefore the research focused on the possibility of radioresistance development. The actors responsible for modulating radioresistance could be miRNAs, thus their potential use was investigated both in radioresistant cell lines and in GBM patients plasma samples. M:Radioresistant cell lines were generated by exposing U87MG, U373MG lines to increasing doses of radiation for 32 weeks. Cell membrane permeability alterations and DNA damage were assessed to characterize the lines. Moreover, 64Cu cell incorporation and subcellular distribution were investigated measuring gamma-radiation emission. miRNA expression was evaluated: in parental and radioresistant cell lines, both in cell pellet and media exosomes; in plasma samples of GBM patients using TaqMan Array MicroRNA Cards. R:Radioresistant lines exhibited reduction in membrane permeability and in DNA DSBs indicating the capability to skip the drug killing effect. Cell uptake assays showed internalization of 64Cu both in the sensitive and radioresistant lines. Radioresistant lines showed a different miRNA expression profile compared to the parental lines. 5 miRNAs were selected as possible biomarkers of response to treatment (miR-339-3p, miR-133b, miR-103a-3p, miR-32-5p, miR-335-5p) and 6 miRNAs as possible predictive biomarkers of response to treatment (let-7e-5p, miR-15a-5p, miR-29c-3p, miR-495, miR-146b-5p, miR-199a-5p). miR-32-5p was selected as possible molecule to be used to restore 64CuCl2 responsiveness in the radioresistant cell lines. C: This is the first study describing the development and characterization of 64CuCl2 radioresistant cell lines useful to implement the approach for dosimetric analysis to avoid radioresistance uprising. miRNAs could bring to a better understanding of 64CuCl2 treatment, becoming a useful tool both in detection of treatment response and both as molecule that could restore responsiveness to 64CuCl2 treatment.
Resumo:
Neuroinflammatory pathways are main culprits of neurodegenerative diseases' onset and progression, including Alzheimer’s disease (AD). On this basis, several anti-inflammatory drugs were repurposed in clinical trials. However, they have failed, probably because neuroinflammation is a complex network, still not fully understood. From these evidences, this thesis focused on the design and synthesis of new chemical entities as potential neuroinflammatory drugs or chemical probes. Projects 1 and 2 aimed to multi-target-directed ligand (MTDL) development to target neuroinflammation in AD. Polypharmacology by MTDLs is considered one of the most promising strategies to face the multifactorial nature of neurodegenerative diseases. Particularly, Project 1 took inspiration from a cromolyn-ibuprofen drug combination polypharmacological approach, which was recently investigated in AD clinical trials. Based on that, two cromolyn-(S)-ibuprofen codrug series were designed and synthesized. Parent drugs were combined via linking or fusing strategies in 1:2 or 1:1 ratio, by means of hydrolyzable bonds. Project 2 started from a still ongoing AD clinical trial on investigational drug neflamapimod. It is a selective inhibitor of p38α-MAPK, a kinase strictly involved in neuroinflammatory pathways. On the other side, rasagiline, an anti-Parkinson drug, was also repurposed as AD treatment. Indeed, rasagiline’s propargylamine fragment demonstrated to be responsible not only for the MAO-B selective inhibition, but also for the neuroprotective activity. Thus, to synergistically combine these two effects into single-molecules, a small set of neflamapimod-rasagiline hybrids was developed. In the end BMX, a poorly investigated kinase, which seems to be involved in pro-inflammatory mediator production, was explored for the development of new chemical probes. High-quality chemical probes are a powerful tool in target validation and starting points for the development of new drug candidates. Thus, Project 3 focused on the design and synthesis of two series of optimized BMX covalent inhibitors as selective chemical probes.