985 resultados para Physical Limits
Resumo:
This thesis addresses the problem of the academic identity of the area traditionally referred to as physical education. The study is a critical examination of the argu ments for the justi cation of this area as an autonomous branch of knowledge. The investigation concentrates on a selected number of arguments. The data collection comprised articles books and proceedings of conferences. The preliminary assessment of these materials resulted in a classi cation of the arguments into three groups. The rst group comprises the arguments in favour of physical education as an academic discipline. The second includes the arguments supporting a science of sport. The third consists of the arguments in favour of to a eld of human movement study. The examination of these arguments produced the following results. (a) The area of physical education does not satisfy the conditions presupposed by the de nition of academic discipline. This is so because the area does not form an integrated system of scienti c theories. (b) The same di culty emerges from the examination of the ar guments for sport science. There is no science of sport because there is no integrated system of scienti c theories related to sport. (c) The arguments in favour of a eld of study yielded more productive results. However di culties arise from the de nition of human movement. The analysis of this concept showed that its limits are not well demarcated. This makes it problematic to take human movement as the focus of a eld of studies. These aspects led to the conclusion that such things as an academic discipline of physical education sport science and eld of human movement studies do not exist. At least there are not such things in the sense of autonomous branches of knowledge. This does not imply that a more integrated inquiry based on several disciplines is not possible and desirable. This would enable someone entering phys ical education to nd a more organised structure of knowledge with some generally accepted problem situations procedures and theories on which to base professional practice.
Resumo:
We present measurements of the process p (P) over bar -> WZ + X -> l 'nu(l ')l (l) over bar at root s = 1:96 TeV,where l and l ' are electrons or muons. Using 1 fb(-1) of data from the D0 experiment, we observe 13 candidates with an expected background of 4.5 +/- 0.6 events and measure a cross section sigma(WZ) = 2.7(-1.3)(+1.7) pb. From the number of observed events and the Z boson transverse momentum distribution, we limit the trilinear WWZ gauge couplings to -0: 17 <= lambda(Z) <= 0.21 (Delta k(Z) <= 0.29(lambda(Z) = 0) at the 95% C.L. for a form factor scale Lambda = 2 TeV. Further, assuming that Delta g(1)(Z) = Delta k(Z), we find -0.12 <= Delta k(Z) <= 0.29(lambda(Z) = 0) at the 95% C. L. These are the most restrictive limits on the WWZ couplings available to date.
Resumo:
Limits are set on anomalous WW gamma and WWZ trilinear gauge couplings using W+W--> e(+)nu(e)e(-)(nu) over bar (e), W+W--> e(+/-)nu(e)mu(-/+)nu(mu), and W+W-->mu(+)nu(mu)mu(-)(nu) over bar (mu) events. The data set was collected by the Run II D0 detector at the Fermilab Tevatron Collider and corresponds to approximately 250 pb(-1) of integrated luminosity at root s=1.96 TeV. Under the assumption that the WW gamma couplings are equal to the WWZ couplings and using a form factor scale of Lambda=2.0 TeV, the combined 95% C.L. one-dimensional coupling limits from all three channels are -0.32
Resumo:
We discuss the matching of the BPS part of the spectrum for a (super) membrane, which gives the possibility of getting the membrane's results via string calculations. In the small coupling limit of M theory the entropy of the system coincides with the standard entropy of type IIB string theory (including the logarithmic correction term). The thermodynamic behavior at a large coupling constant is computed by considering M theory on a manifold with a topology T-2 x R-9. We argue that the finite temperature partition functions (brane Laurent series for p not equal 1) associated with the BPS p-brane spectrum can be analytically continued to well-defined functionals. It means that a finite temperature can be introduced in brane theory, which behaves like finite temperature field theory. In the limit p --> 0 (point particle limit) it gives rise to the standard behavior of thermodynamic quantities.
Resumo:
The WW gamma triple gauge boson coupling parameters are studied using p (p) over bar -> l nu gamma + X(l = e, mu) events at root s = 1.96 TeV. The data were collected with the D0 detector from an integrated luminosity of 162 pb(-1) delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p (p) over bar -> W(gamma) + X -> l nu gamma + X with E-T(gamma) > 8 GeV and Delta R-l gamma > 0.7 is 14.8 +/- 1.6(stat) +/- 1.0(syst) +/- 1.0(lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa(gamma) < 0.96 and -0.20 < lambda(gamma) < 0.20.
Production of WZ events in pp(-) collisions at root s=1.96 TeV and limits on anomalous WWZ couplings
Resumo:
We present results from a search for WZ production with subsequent decay to l nu l'(l) over bar'(l and l' = e or mu) using 0.30 fb(-1) of data collected by the D0 experiment between 2002 and 2004 at the Fermilab Tevatron. Three events with WZ decay characteristics are observed. With an estimated background of 0.71 +/- 0.08 events, we measure the WZ production cross section to be 4.5(-2.6)(+3.8) pb, with a 95% C.L. upper limit of 13.3 pb. The 95% C.L. limits for anomalous WWZ couplings are found to be -2.0
Resumo:
We present a measurement of the Z gamma production cross section and limits on anomalous ZZ gamma and Z gamma gamma couplings for form-factor scales of Lambda=750 and 1000 GeV. The measurement is based on 138 (152) candidates in the ee gamma (mu mu gamma) final state using 320(290) pb(-1) of p (p) over bar collisions at root s=1.96 TeV. The 95% C.L. limits on real and imaginary parts of individual anomalous couplings are vertical bar h(10,30)(Z)vertical bar < 0.23, vertical bar h(20,40)(Z)vertical bar < 0.020, vertical bar h(10,30)(gamma)vertical bar < 0.23, and vertical bar h(20,40)(gamma)vertical bar < 0.019 for Lambda=1000 GeV.
Resumo:
We report results of a study of the B-s(0) oscillation frequency using a large sample of B-s(0) semileptonic decays corresponding to approximately 1 fb(-1) of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron Collider in 2002-2006. The amplitude method gives a lower limit on the B-s(0) oscillation frequency at 14.8 ps(-1) at the 95% C.L. At Delta m(s)=19 ps(-1), the amplitude deviates from the hypothesis A=0 (1) by 2.5 (1.6) standard deviations, corresponding to a two-sided C.L. of 1% (10%). A likelihood scan over the oscillation frequency, Delta m(s), gives a most probable value of 19 ps(-1) and a range of 17
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present a study of mu mu mu mu, eeee, and mu mu ee events using 1 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron p (p) over bar Collider at root s = 1.96 TeV. Requiring the lepton pair masses to be greater than 30 GeV, we observe one event, consistent with the expected background of 0.13 +/- 0.03 events and with the predicted standard model ZZ and Z gamma(*) production of 1.71 +/- 0.15 events. We set an upper limit on the ZZ and Z gamma(*) cross section of 4.4 pb at the 95% C.L. We also derive limits on anomalous neutral trilinear ZZZ and ZZ gamma(*) gauge couplings. The one-parameter 95% C.L. coupling limits with a form-factor scale Lambda = 1.2 TeV are -0.28 < f(40)(Z)< 0.28, -0.31 < f(50)(Z)< 0.29, -0.26 < f(40)(gamma)< 0.26, and -0.30 < f(50)(gamma)< 0.28.
Resumo:
We present results from a study of p (p) over bar -> W gamma+X events utilizing data corresponding to 0.7 fb(-1) of integrated luminosity at root s = 1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider. We set limits on anomalous WW gamma couplings at the 95% C.L. The one-dimensional 95% C.L. limits are 0.49
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)