899 resultados para Photon absorptiometry
Resumo:
CONTEXT: Cirrhosis after viral hepatitis has been identified as a risk factor for osteoporosis in men. However, in postmenopausal women, most studies have evaluated the effect of primary biliary cirrhosis, but little is known about the effect of viral cirrhosis on bone mass [bone mineral density (BMD)] and bone metabolism. OBJECTIVE: Our objective was to assess the effect of viral cirrhosis on BMD and bone metabolism in postmenopausal women. DESIGN: We conducted a cross-sectional descriptive study. SETTING AND PATIENTS: We studied 84 postmenopausal female outpatients with viral cirrhosis and 96 healthy postmenopausal women from the general community. BMD was measured by dual-energy x-ray absorptiometry at lumbar spine (LS) and femoral neck (FN). RESULTS: The percentage with osteoporosis did not significantly differ between patients (LS, 43.1%; FN, 32.2%) and controls (LS, 41.2%; FN, 29.4%), and there was no difference in BMD (z-score) between groups. Serum concentrations of soluble TNF receptors, estradiol, and osteoprotegerin (OPG) were significantly higher in patients vs. controls (P < 0.001, P < 0.05, and P < 0.05, respectively). No significant difference was observed in urinary deoxypyridinoline. Serum OPG levels were positively correlated with soluble TNF receptors (r = 0.35; P < 0.02) and deoxypyridinoline (r = 0.37; P < 0.05). CONCLUSIONS: This study shows that bone mass and bone resorption rates do not differ between postmenopausal women with viral cirrhosis and healthy postmenopausal controls and suggests that viral cirrhosis does not appear to increase the risk of osteoporosis in these women. High serum estradiol and OPG concentrations may contribute to preventing the bone loss associated with viral cirrhosis in postmenopausal women.
Resumo:
Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8 x 106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 microl) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemming from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.
Resumo:
Keywords Diabetes mellitus; coronary artery disease; myocardial ischemia; prognostic value; single-photon emission computed tomography myocardial perfusion imaging Summary Aim: To determine the long-term prognostic value of SPECT myocardial perfusion imaging (MPI) for the occurrence of cardiovascular events in diabetic patients. Methods: SPECT MPI of 210 consecutive Caucasian diabetic patients were analysed using Kaplan-Meier event-free survival curves and independent predictors were determined by Cox multivariate analyses. Results: Follow-up was complete in 200 (95%) patients with a median period of 3.0 years (0.8-5.0). The population was composed of 114 (57%) men, age 65±10 years, 181 (90.5%) type 2 diabetes mellitus, 50 (25%) with a history of coronary artery disease (CAD) and 98 (49%) presenting chest pain prior to MPI. The prevalence of abnormal MPI was 58%. Patients with a normal MPI had neither cardiac death, nor myocardial infarction, independently of a history of coronary artery disease or chest pain. Among the independent predictors of cardiac death and myocardial infarction, the strongest was abnormal MPI (p<.0001), followed by history of CAD (Hazard Ratio (HR)= t 5.9, p=0.0001), diabetic retinopathy (HR=10.0, p=0.001) and inability to exercise (HR=7.7, p=0.02). Patients with normal 1VIPI had a low revascularisation rate of 2.4% during the follow-up period. Compared to normal MPI, cardiovascular events increased 5.2 fold for reversible defects, 8.5 fold for fixed defects and 20.1 fold for the association of both defects. Conclusion: Diabetic patients with normal MPI had an excellent prognosis independently of history of CAD. On the opposite, an abnormal MPI led to a > 5 fold increase in cardiovascular events. This emphasizes the value of SPECT MPI in predicting and risk-stratifying cardiovascular events in diabetic patients. Mots-Clés Diabète; maladie coronarienne; ischémie myocardique; valeur pronostique; tomoscintigraphie myocardique de perfusion par émission monophotonique Résumé Objectifs: Déterminer la valeur pronostique à long terme de la tomoscintigraphie myocardique de perfusion (TSMP) chez les patients diabétiques pour prédire les événements cardiovasculaires (ECV). Méthodes: Etude de 210 diabétiques caucasiens consécutifs référés pour une TSMP. Les courbes de survie ont été déterminées par Kaplan-Meier et les facteurs prédictifs indépendants par analyses multivariées de type Cox. Résultats: Le suivi a été complet chez 200 (95%) patients avec une durée médiane de 3.0 ans (0.8-50). La population était composée de 114 (57%) hommes, âge moyen 65±10 ans, avec 181 (90.5%) diabète de type 2, 50 (25%) antécédents de maladie coronarienne (AMC) et 98 (49%) patients connus pour un angor avant la TSMP. La prévalence de TSMP anormales était de 58%. Aucun décès d'origine cardiaque ou infarctus du myocarde n'est survenu chez les patients avec une TSMP normale, ceci indépendamment de leurs AMC et des douleurs thoraciques. Les facteurs prédictifs indépendants pour les ECV sont une TSMP anormale (p<.0001), les AMC (Hazard Ratio (HR)=15.9, p-0.0001), suivi de la rétinopathie diabétique (HR-10.0, p=0.001) et de l'incapacité à effectuer un exercice (HR=7.7, p=0.02). Les patients avec une TSMP normale ont présenté un taux de revascularisations de 2.4%. La présence de défauts mixtes accroît le risque d'ECV de 20.1 fois, les défauts fixes de 8.5 fois et les défauts réversibles de 5.2 fois comparés aux sujets avec une TSMP normale. Conclusion: Les patients diabétiques, coronariens ou non, avec une tomoscintigraphie myocardique de perfusion normale ont un excellent pronostique. A l'opposé, une TSMP anormale est associée à une augmentation du risque d'ECV de plus de 5 fois. Ceci confirme l'utilité de la TSMP dans la stratification du risque chez les patients diabétiques.
Resumo:
OsteoLaus is a cohort of 1400 women 50 to 80 years living in Lausanne, Switzerland. Clinical risk factors for osteoporosis, bone ultrasound of the heel, lumbar spine and hip bone mineral density (BMD), assessment of vertebral fracture by DXA, and microarchitecture evaluation by TBS (Trabecular Bone Score) will be recorded. TBS is a new parameter obtained after a re-analysis of a DXA exam. TBS is correlated with parameters of microarchitecture. His reproducibility is good. TBS give an added diagnostic value to BMD, and predict osteoporotic fracture (partially) independently to BMD. The position of TBS in clinical routine in complement to BMD and clinical risk factors will be evaluated in the OsteoLaus cohort.
Resumo:
BACKGROUND/OBJECTIVES: (1) To cross-validate tetra- (4-BIA) and octopolar (8-BIA) bioelectrical impedance analysis vs dual-energy X-ray absorptiometry (DXA) for the assessment of total and appendicular body composition and (2) to evaluate the accuracy of external 4-BIA algorithms for the prediction of total body composition, in a representative sample of Swiss children. SUBJECTS/METHODS: A representative sample of 333 Swiss children aged 6-13 years from the Kinder-Sportstudie (KISS) (ISRCTN15360785). Whole-body fat-free mass (FFM) and appendicular lean tissue mass were measured with DXA. Body resistance (R) was measured at 50 kHz with 4-BIA and segmental body resistance at 5, 50, 250 and 500 kHz with 8-BIA. The resistance index (RI) was calculated as height(2)/R. Selection of predictors (gender, age, weight, RI4 and RI8) for BIA algorithms was performed using bootstrapped stepwise linear regression on 1000 samples. We calculated 95% confidence intervals (CI) of regression coefficients and measures of model fit using bootstrap analysis. Limits of agreement were used as measures of interchangeability of BIA with DXA. RESULTS: 8-BIA was more accurate than 4-BIA for the assessment of FFM (root mean square error (RMSE)=0.90 (95% CI 0.82-0.98) vs 1.12 kg (1.01-1.24); limits of agreement 1.80 to -1.80 kg vs 2.24 to -2.24 kg). 8-BIA also gave accurate estimates of appendicular body composition, with RMSE < or = 0.10 kg for arms and < or = 0.24 kg for legs. All external 4-BIA algorithms performed poorly with substantial negative proportional bias (r> or = 0.48, P<0.001). CONCLUSIONS: In a representative sample of young Swiss children (1) 8-BIA was superior to 4-BIA for the prediction of FFM, (2) external 4-BIA algorithms gave biased predictions of FFM and (3) 8-BIA was an accurate predictor of segmental body composition.
Resumo:
A newly identified cytokine, osteoprotegerin (OPG) appears to be involved in the regulation of bone remodeling. In vitro studies suggest that OPG, a soluble member of the TNF receptor family of proteins, inhibits osteoclastogenesis by interrupting the intercellular signaling between osteoblastic stromal cells and osteoclast progenitors. As patients with chronic renal failure (CRF) often have renal osteodystrophy (ROD), we investigated the role of osteoprotegerin (OPG) in ROD, and investigated whether there was any relationship between serum OPG, intact parathyroid (PTH) (iPTH), vitamin D, and trabecular bone. Serum OPG combined with iPTH might be a useful tool in the noninvasive diagnosis of ROD, at least in cases in which the range of PTH values compromises reliable diagnosis. Thirty-six patients on maintenance hemodiafiltration (HDF) and a control group of 36 age and sex matched healthy subjects with no known metabolic bone disease were studied. The following assays were made on serum: iPTH, osteocalcin (BGP), bone alkaline phosphatase, 25(OH)-cholecalciferol, calcium, phosphate, OPG, IGF-1, estradiol, and free testosterone. Serum Ca++, P, B-ALP, BGP, IGF-1, iPTH, and OPG levels were significantly higher in HDF patients than in controls, while DXA measurements and quantitative ultrasound (QUS) parameters were significantly lower. On grouping patients according to their mean OPG levels, we observed significantly lower serum IGF-1, vitamin D3 concentrations, and lumbar spine and hip bone mineral density in the high OPG groups. No correlation was found between OPG and bone turnover markers, whereas a negative correlation was found between serum OPG and IGF-1 levels (r=-0.64, p=0.032). Serum iPTH concentrations were positively correlated with bone alkaline phosphatase (B-ALP) (r=0.69, p=0.038) and BGP (r=0.92, p<0.001). The findings made suggest that an increase in OPG levels may be a compensatory response to elevated bone loss. The low bone mineral density (BMD) levels found in the high OPG group might have been due to the significant decrease in serum IGF-1 and vitamin D3 observed. In conclusion, the findings made in the present study demonstrate that increased OPG in hemodiafiltration patients is only partly due to decreased renal clearance. As it may partly reflect a compensatory response to increased bone loss, this parameter might be helpful in the identification of patients with a marked reduction in trabecular BMD.
Resumo:
Osteoporotic hip fractures increase dramatically with age and are responsible for considerable morbidity and mortality. Several treatments to prevent the occurrence of hip fracture have been validated in large randomized trials and the current challenge is to improve the identification of individuals at high risk of fracture who would benefit from therapeutic or preventive intervention. We have performed an exhaustive literature review on hip fracture predictors, focusing primarily on clinical risk factors, dual X-ray absorptiometry (DXA), quantitative ultrasound, and bone markers. This review is based on original articles and meta-analyses. We have selected studies that aim both to predict the risk of hip fracture and to discriminate individuals with or without fracture. We have included only postmenopausal women in our review. For studies involving both men and women, only results concerning women have been considered. Regarding clinical factors, only prospective studies have been taken into account. Predictive factors have been used as stand-alone tools to predict hip fracture or sequentially through successive selection processes or by combination into risk scores. There is still much debate as to whether or not the combination of these various parameters, as risk scores or as sequential or concurrent combinations, could help to better predict hip fracture. There are conflicting results on whether or not such combinations provide improvement over each method alone. Sequential combination of bone mineral density and ultrasound parameters might be cost-effective compared with DXA alone, because of fewer bone mineral density measurements. However, use of multiple techniques may increase costs. One problem that precludes comparison of most published studies is that they use either relative risk, or absolute risk, or sensitivity and specificity. The absolute risk of individuals given their risk factors and bone assessment results would be a more appropriate model for decision-making than relative risk. Currently, a group appointed by the World Health Organization and lead by Professor John Kanis is working on such a model. It will therefore be possible to further assess the best choice of threshold to optimize the number of women needed to screen for each country and each treatment.
Resumo:
The rigorous and transparent treatment of the effects of nuclear vibrational motion in two-photon absorption (TPA) was discussed. Perturbation formula for diatomic molecules were developed and applied to the X¹Σ+–A¹Π transition in CO. The analysis showed that the vibrations played an important role in TPA, just as their role in the calculation of conventional nonlinear optical (NLO) hyperpolarizabilities
Resumo:
OBJECTIVE: To demonstrate the validity and reliability of volumetric quantitative computed tomography (vQCT) with multi-slice computed tomography (MSCT) and dual energy X-ray absorptiometry (DXA) for hip bone mineral density (BMD) measurements, and to compare the differences between the two techniques in discriminating postmenopausal women with osteoporosis-related vertebral fractures from those without. METHODS: Ninety subjects were enrolled and divided into three groups based on the BMD values of the lumbar spine and/or the femoral neck by DXA. Groups 1 and 2 consisted of postmenopausal women with BMD changes <-2SD, with and without radiographically confirmed vertebral fracture (n=11 and 33, respectively). Group 3 comprised normal controls with BMD changes > or =-1SD (n=46). Post-MSCT (GE, LightSpeed16) scan reconstructed images of the abdominal-pelvic region, 1.25 mm thick per slice, were processed by OsteoCAD software to calculate the following parameters: volumetric BMD values of trabecular bone (TRAB), cortical bone (CORT), and integral bone (INTGL) of the left femoral neck, femoral neck axis length (NAL), and minimum cross-section area (mCSA). DXA BMD measurements of the lumbar spine (AP-SPINE) and the left femoral neck (NECK) also were performed for each subject. RESULTS: The values of all seven parameters were significantly lower in subjects of Groups 1 and 2 than in normal postmenopausal women (P<0.05, respectively). Comparing Groups 1 and 2, 3D-TRAB and 3D-INTGL were significantly lower in postmenopausal women with vertebral fracture(s) [(109.8+/-9.61) and (243.3+/-33.0) mg/cm3, respectively] than in those without [(148.9+/-7.47) and (285.4+/-17.8) mg/cm(3), respectively] (P<0.05, respectively), but no significant differences were evident in AP-SPINE or NECK BMD. CONCLUSION: the femoral neck-derived volumetric BMD parameters using vQCT appeared better than the DXA-derived ones in discriminating osteoporotic postmenopausal women with vertebral fractures from those without. vQCT might be useful to evaluate the effect of osteoporotic vertebral fracture status on changes in bone mass in the femoral neck.
Resumo:
OBJECTIVE: A new tool to quantify visceral adipose tissue (VAT) over the android region of a total body dual-energy x-ray absorptiometry (DXA) scan has recently been reported. The measurement, CoreScan, is currently available on Lunar iDXA densitometers. The purpose of the study was to determine the precision of the CoreScan VAT measurement, which is critical for understanding the utility of this measure in longitudinal trials. DESIGN AND METHODS: VAT precision was characterized in both an anthropomorphic imaging phantom (measured on 10 Lunar iDXA systems) and a clinical population consisting of obese women (n = 32). RESULTS: The intrascanner precision for the VAT phantom across 9 quantities of VAT mass (0-1,800 g) ranged from 28.4 to 38.0 g. The interscanner precision ranged from 24.7 to 38.4 g. There was no statistical dependence on the quantity of VAT for either the inter- or intrascanner precision result (p = 0.670). Combining inter- and intrascanner precision yielded a total phantom precision estimate of 47.6 g for VAT mass, which corresponds to a 4.8% coefficient of variance (CV) for a 1 kg VAT mass. Our clinical population, who completed replicate total body scans with repositioning between scans, showed a precision of 56.8 g on an average VAT mass of 1110.4 g. This corresponds to a 5.1% CV. Hence, the in vivo precision result was similar to the phantom precision result. CONCLUSIONS: The study suggests that CoreScan has a relatively low precision error in both phantoms and obese women and therefore may be a useful addition to clinical trials where interventions are targeted towards changes in visceral adiposity.
Resumo:
The trabecular bone score (TBS) is a gray-level textural metric that can be extracted from the two-dimensional lumbar spine dual-energy X-ray absorptiometry (DXA) image. TBS is related to bone microarchitecture and provides skeletal information that is not captured from the standard bone mineral density (BMD) measurement. Based on experimental variograms of the projected DXA image, TBS has the potential to discern differences between DXA scans that show similar BMD measurements. An elevated TBS value correlates with better skeletal microstructure; a low TBS value correlates with weaker skeletal microstructure. Lumbar spine TBS has been evaluated in cross-sectional and longitudinal studies. The following conclusions are based upon publications reviewed in this article: 1) TBS gives lower values in postmenopausal women and in men with previous fragility fractures than their nonfractured counterparts; 2) TBS is complementary to data available by lumbar spine DXA measurements; 3) TBS results are lower in women who have sustained a fragility fracture but in whom DXA does not indicate osteoporosis or even osteopenia; 4) TBS predicts fracture risk as well as lumbar spine BMD measurements in postmenopausal women; 5) efficacious therapies for osteoporosis differ in the extent to which they influence the TBS; 6) TBS is associated with fracture risk in individuals with conditions related to reduced bone mass or bone quality. Based on these data, lumbar spine TBS holds promise as an emerging technology that could well become a valuable clinical tool in the diagnosis of osteoporosis and in fracture risk assessment.
Resumo:
Pregnancy-associated osteoporosis usually appears during the first pregnancy and does not affect the followings. We report two cases where non-traumatic fractures have been diagnosed shortly after delivery of second pregnancies. Wide investigations could not find a cause of secondary osteoporosis. In the first case we came to the diagnosis of pregnancy-associated osteoporosis and an intravenous treatment of ibandronate has been prescribed. In the second case the bone mineral density (BMD) being almost normal and the localisation of the fracture being atypical, we concluded to a fracture of non-osteoporotic origin, probably due to mechanical stress during pregnancy. No therapy against osteoporosis has been prescribed.
Resumo:
The World Health Organization fracture risk assessment tool, FRAX(®), is an advance in clinical care that can assist in clinical decision-making. However, with increasing clinical utilization, numerous questions have arisen regarding how to best estimate fracture risk in an individual patient. Recognizing the need to assist clinicians in optimal use of FRAX(®), the International Osteoporosis Foundation (IOF) in conjunction with the International Society for Clinical Densitometry (ISCD) assembled an international panel of experts that ultimately developed joint Official Positions of the ISCD and IOF advising clinicians regarding FRAX(®) usage. As part of the process, the charge of the FRAX(®) Clinical Task Force was to review and synthesize data surrounding a number of recognized clinical risk factors including rheumatoid arthritis, smoking, alcohol, prior fracture, falls, bone turnover markers and glucocorticoid use. This synthesis was presented to the expert panel and constitutes the data on which the subsequent Official Positions are predicated. A summary of the Clinical Task Force composition and charge is presented here.
Resumo:
The computer code system PENELOPE (version 2008) performs Monte Carlo simulation of coupledelectron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV toabout 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme.Electron and positron histories are generated on the basis of a mixed procedure, which combinesdetailed simulation of hard events with condensed simulation of soft interactions. A geometry packagecalled PENGEOM permits the generation of random electron-photon showers in material systemsconsisting of homogeneous bodies limited by quadric surfaces, i.e., planes, spheres, cylinders, etc. Thisreport is intended not only to serve as a manual of the PENELOPE code system, but also to provide theuser with the necessary information to understand the details of the Monte Carlo algorithm.
Resumo:
The trabecular bone score (TBS) is a new parameter that is determined from gray-level analysis of dual-energy X-ray absorptiometry (DXA) images. It relies on the mean thickness and volume fraction of trabecular bone microarchitecture. This was a preliminary case-control study to evaluate the potential diagnostic value of TBS as a complement to bone mineral density (BMD), by comparing postmenopausal women with and without fractures. The sample consisted of 45 women with osteoporotic fractures (5 hip fractures, 20 vertebral fractures, and 20 other types of fracture) and 155 women without a fracture. Stratification was performed, taking into account each type of fracture (except hip), and women with and without fractures were matched for age and spine BMD. BMD and TBS were measured at the total spine. TBS measured at the total spine revealed a significant difference between the fracture and age- and spine BMD-matched nonfracture group, when considering all types of fractures and vertebral fractures. In these cases, the diagnostic value of the combination of BMD and TBS likely will be higher compared with that of BMD alone. TBS, as evaluated from standard DXA scans directly, potentially complements BMD in the detection of osteoporotic fractures. Prospective studies are necessary to fully evaluate the potential role of TBS as a complementary risk factor for fracture.