901 resultados para Phosphoinositide 3-kinase
Resumo:
OBJECTIVES: Sphingosine kinase 1 (SphK1) phosphorylates the membrane sphingolipid, sphingosine, to sphingosine-1-phosphate (S1P), an oncogenic mediator, which drives tumor cell growth and survival. Although SphK1 has gained increasing prominence as an oncogenic determinant in several cancers, its potential as a therapeutic target in colon cancer remains uncertain. We investigated the clinical relevance of SphK1 expression in colon cancer as well as its inhibitory effects in vitro.
METHODS: SphK1 expression in human colon tumor tissues was determined by immunohistochemistry and its clinicopathological significance was ascertained in 303 colon cancer cases. The effects of SphK1 inhibition on colon cancer cell viability and the phosphoinositide 3-kinase (PI3K)/Akt cell survival pathway were investigated using a SphK1-selective inhibitor-compound 5c (5c). The cytotoxicity of a novel combination using SphK1 inhibition with the chemotherapeutic drug, 5-fluorouracil (5-FU), was also determined.
RESULTS: High SphK1 expression correlated with advanced tumor stages (AJCC classification). Using a competing risk analysis model to take into account disease recurrence, we found that SphK1 is a significant independent predictor for mortality in colon cancer patients. In vitro, the inhibition of SphK1 induced cell death in colon cancer cell lines and attenuated the serum-dependent PI3K/Akt signaling. Inhibition of SphK1 also enhanced the sensitivity of colon cancer cells to 5-FU.
CONCLUSION: Our findings highlight the impact of SphK1 in colon cancer progression and patient survival, and provide evidence supportive of further development in combination strategies that incorporate SphK1 inhibition with current chemotherapeutic agents to improve colon cancer outcomes.
Resumo:
The signaling pathway of phosphatidylinositol 3-kinase (PI3K) is critical in many aspects of growth and cell survival. The path of PI3K is stimulated physiologically as a result of many growth factors and regulatory factors. Several genetic alterations such as amplification, mutation and chromosomal arrangements may compromise the PI3K pathway, generating permanent activation in different cancer types have found evidence of these deleterious genetic modifications. Abnormal activation of the PI3K pathway results in alteration of the control mechanisms of growth and cell survival, which favors the competitive growth, and frequently metastatic capacity, greater resistance to treatment. The aim of this paper is to review matters relating to the operation of the PI3K/Akt signaling pathway and its role in the process of carcinogenesis in humans.
Resumo:
Flavonoids are plant-derived polyphenolic compounds with neuroprotective properties. Recent work suggests that, in addition to acting as hydrogen donors, they activate protective signalling pathways. The anti-oxidant response element (ARE) promotes the expression of protective proteins including those required for glutathione synthesis (xCT cystine antiporter, gamma-glutamylcysteine synthetase and glutathione synthase). The use of a luciferase reporter (ARE-luc) assay showed that the dietary flavan-3-ol (-)epicatechin activates this pathway in primary cortical astrocytes but not neurones. We also examined the distribution of NF-E2-related factor-2 (Nrf2), a key transcription factor in ARE-mediated gene expression. We found, using immunocytochemistry, that Nrf2 accumulated in the nuclei of astrocytes following exposure to tert-butylhydroquinone (100 mu M) and (-)epicatechin (100 nM). (-)Epicatechin signalling via Nrf2 was inhibited by wortmannin implicating a phosphatidylinositol 3-kinase-dependent pathway. Finally, (-)epicatechin increased glutathione levels in astrocytes consistent with an up-regulation of ARE-mediated gene expression. Together, this suggests that flavonoids may be cytoprotective by increasing anti-oxidant gene expression.
Resumo:
Background: Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI–Fc receptor (FcR)-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated binding protein-1 (Gab1), which is regulated by binding of the Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to Gab1, has been shown in other cell types to sustain PI3K activity to elicit cellular responses. Platelet endothelial cell adhesion molecule-1 (PECAM-1) functions as a negative regulator of platelet reactivity and thrombosis, at least in part by inhibiting GPVI–FcR-chain signaling via recruitment of SHP-2 to phosphorylated immunoreceptor tyrosine-based inhibitory motifs in PECAM-1. Objective: To investigate the possibility that PECAM-1 regulates the formation of the Gab1–p85 signaling complexes, and the potential effect of such interactions on GPVI-mediated platelet activation in platelets. Methods: The ability of PECAM-1 signaling to modulate the LAT signalosome was investigated with immunoblotting assays on human platelets and knockout mouse platelets. Results: PECAM-1-associated SHP-2 in collagen-stimulated platelets binds to p85, which results in diminished levels of association with both Gab1 and LAT and reduced collagen-stimulated PI3K signaling. We therefore propose that PECAM-1-mediated inhibition of GPVI-dependent platelet responses result, at least in part, from recruitment of SHP-2–p85 complexes to tyrosine-phosphorylated PECAM-1, which diminishes the association of PI3K with activatory signaling molecules, such as Gab1 and LAT.
Resumo:
Phosphoinositide 3-kinase (PI3K) is a critical component of the signaling pathways that control the activation of platelets. Here we have examined the regulation of protein kinase B (PKB), a downstream effector of PI3K, by the platelet collagen receptor glycoprotein (GP) VI and thrombin receptors. Stimulation of platelets with collagen or convulxin (a selective GPVI agonist) resulted in PI3K-dependent, and aggregation independent, Ser(473) and Thr(308) phosphorylation of PKBalpha, which results in PKB activation. This was accompanied by translocation of PKB to cell membranes. The phosphoinositide-dependent kinase PDK1 is known to phosphorylate PKBalpha on Thr(308), although the identity of the kinase responsible for Ser(473) phosphorylation is less clear. One candidate that has been implicated as being responsible for Ser(473) phosphorylation, either directly or indirectly, is the integrin-linked kinase (ILK). In this study we have examined the interactions of PKB, PDK1, and ILK in resting and stimulated platelets. We demonstrate that in platelets PKB is physically associated with PDK1 and ILK. Furthermore, the association of PDK1 and ILK increases upon platelet stimulation. It would therefore appear that formation of a tertiary complex between PDK1, ILK, and PKB may be necessary for phosphorylation of PKB. These observations indicate that PKB participates in cell signaling downstream of the platelet collagen receptor GPVI. The role of PKB in collagen- and thrombin-stimulated platelets remains to be determined.
Resumo:
There is extensive evidence to show that phosphatidylinositol 3-kinase plays an important role in signaling by the immune family of receptors, which has recently been extended to include the platelet collagen receptor, glycoprotein VI. In this report we present two potential mechanisms for the regulation of this enzyme on stimulation of platelets by collagen. We show that on stimulation with collagen, the regulatory subunit of phosphatidylinositol 3-kinase associates with the tyrosine-phosphorylated form of the adapter protein linker for activator of T Cells (LAT) and the tyrosine-phosphorylated immunoreceptor tyrosine-based activation motif of the Fc receptor gamma-chain (a component of the collagen receptor complex that includes glycoprotein VI). The associations of the Fc receptor gamma-chain and LAT with p85 are rapid and supported by the Src-homology 2 domains of the regulatory subunit. We did not obtain evidence to support previous observations that the regulatory subunit of phosphatidylinositol 3-kinase is regulated through association with the tyrosine kinase Syk. The present results provide a molecular basis for the regulation of the p85/110 form of phosphatidylinositol 3-kinase by GPVI, the collagen receptor that underlies activation.
Resumo:
Flavonoids reduce cardiovascular disease risk through anti-inflammatory, anti-coagulant and anti-platelet actions. One key flavonoid inhibitory mechanism is blocking kinase activity that drives these processes. Flavonoids attenuate activities of kinases including phosphoinositide-3-kinase (PI3K), Fyn, Lyn, Src, Syk, PKC, PIM1/2, ERK, JNK, and PKA. X-ray crystallographic analyses of kinase-flavonoid complexes show that flavonoid ring systems and their hydroxyl substitutions are important structural features for their binding to kinases. A clearer understanding of structural interactions of flavonoids with kinases is necessary to allow construction of more potent and selective counterparts. We examined flavonoid (quercetin, apigenin and catechin) interactions with Src-family kinases (Lyn, Fyn and Hck) applying the Sybyl docking algorithm and GRID. A homology model (Lyn) was used in our analyses to demonstrate that high quality predicted kinase structures are suitable for flavonoid computational studies. Our docking results revealed potential hydrogen bond contacts between flavonoid hydroxyls and kinase catalytic site residues. Identification of plausible contacts indicated that quercetin formed the most energetically stable interactions, apigenin lacked hydroxyl groups necessary for important contacts, and the non-planar structure of catechin could not support predicted hydrogen bonding patterns. GRID analysis using a hydroxyl functional group supported docking results. Based on these findings, we predicted that quercetin would inhibit activities of Src-family kinases with greater potency than apigenin and catechin. We validated this prediction using in vitro kinase assays. We conclude that our study can be used as a basis to construct virtual flavonoid interaction libraries to guide drug discovery using these compounds as molecular templates.
Resumo:
Objectives: In the present study, a novel pathway by which palmilate potentiates glucose-induced insulin secretion by pancreatic beta cells was investigated. Methods: Groups of freshly isolated islets were incubated in 10 mM glucose with palmitate, LY294002, wortmannin, and fumonism B I for measurement of insulin secretion by radioimmunoassay (RIA). Also, phosphorylation and content of AKT and PKC proteins were evaluated by immunoblotting. Results: Glucose plus palmitate and glucose plus LY294002 or wortmannin (PI3K inhibitors) increased glucose-induced insulin secretion by isolated pancreatic islets. Glucose at 10 mM induced AKT and PKC zeta/lambda phosphorylation. Palmitate (0.1 mM) abolished glucose stimulation of AKT and PKC zeta/lambda phosphorylation possibly through PI3K inhibition because both LY294002 (50 mu M) and wortmannin (100 nM) caused the same effect. The inhibitory effect of palmitate on glucose-induced AKT and PKC zeta/lambda phosphorylation and the stimulatory effect of palmitate on glucose-induced insulin secretion were not observed in the presence of fumonisin B1, all inhibitor of ceramide synthesis. Conclusions: These findings support the proposition that palmilate increases insulin release in the presence of 10 mM glucose by inhibiting PI3K activity through a mechanism that involves ceramide synthesis.
Resumo:
Background: Endurance training increases insulin-stimulated muscle glucose transport and leads to improved metabolic control in diabetic patients.Objective: To analyze the effects of endurance training on the early steps of insulin action in muscle of rats. Design: Male rats submitted to daily swimming for 6 weeks were compared with sedentary controls. At the end of the training period, anesthetized animals received an intravenous (i.v.) injection of insulin and had a fragment of their gastrocnemius muscle excised for the experiments.Methods: Associations between insulin receptor, insulin receptor substrates (IRS)-1 and -2 and phosphatidylinositol 3-kinase (PI3-kinase) were analyzed by immunoprecipitation and immunoblotting. Akt-1 serine phosphorylation and specific protein quantification were detected by immunoblotting of total extracts, and IRS-1/IRS-2-associated PI3-kinase activity were determined by thin-layer chromatography.Results: Insulin-induced phosphorylation of IRS-1 and IRS-2 increased respectively by 1.8-fold (P < 0.05) and 1.5-fold (P < 0.05), whereas their association with PI3-kinase increased by 2.3-fold (P < 0.05) and 1.9-fold (P < 0.05) in trained rats as compared with sedentary controls, respectively. The activity of PI3-kinase associated with IRS-1 and IRS-2 increased by 1.8-fold (P < 0.05) and 1.7-fold (P < 0.05) respectively, in trained rats as compared with their untrained counterparts. Serine phosphorylation of Akt-1/PKB increased 1.7-fold (P < 0.05) in trained rats in response to insulin. These findings were accompanied by increased responsiveness to insulin as demonstrated by a reduced area under the curve for insulin during an i.v. glucose tolerance test, by increased glucose disappearance rate during an insulin tolerance test, and by increased expression of glucose transporter-4.Conclusions: the increased responsiveness to insulin induced by chronic exercise in rat skeletal muscle may result, at least in part, from the modulation of the insulin signaling pathway at different molecular levels.