981 resultados para Phosphate glasses
Resumo:
Two structural properties in mixed alkali metal phosphate glasses that seem to be crucial to the development of the mixed ion effect in dc conductivity were systematically analyzed in Na mixed metaphosphates: the local order around the mobile species, and their distribution and mixing in the glass network. The set of glasses considered here, Na1-xMxPO3 with M = Li, Ag, K, Rb, and Cs and 0 <= x <= 1, encompass a broad degree of size mismatch between the mixed cation species. A comprehensive solid-state nuclear magnetic resonance study was carried out using P-31 MAS, Na-23 triple quantum MAS, Rb-87 QCPMG, P-31-Na-23 REDOR, Na-23-Li-7 and Li-7-Li-6 SEDOR, and Na-23 spin echo decay. It was observed that the arrangement of P atoms around Na in the mixed glasses was indistinguishable from that observed in the NaPO3 glass. However, systematic distortions in the local structure of the 0 environments around Na were observed, related to the presence of the second cation. The average Na-O distances show an expansion/compression When Na+ ions are replaced by cations with respectively smaller/bigger radii. The behavior of the nuclear electric quadrupole coupling. constants indicates that this expansion reduces the local symmetry, while the compression produces the opposite effect These effects become marginally small when the site mismatch between the cations is small, as in Na-Ag mixed glasses. The present study confirms the intimate mixing of cation species at the atomic scale, but clear deviations from random mixing were detected in systems with larger alkali metal ions (Cs-Na, K-Na, Rb-Na). In contrast, no deviations from the statistical ion mixture were found in the systems Ag-Na and Li-Na, where mixed cations are either of radii comparable to (Ag+) or smaller than (Li+) Na+. The set of results supports two fundamental structural features of the models proposed to explain the mixed ion effect: the. structural specificity of the sites occupied by each cation species and their mixing at the atomic scale.
Resumo:
Glasses in the system xGeO(2)-(1-x)NaPO3 (0 <= x <= 0.50) were prepared by conventional melting quenching and characterized by thermal analysis, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and P-31 nuclear magnetic resonance (MAS NMR) techniques. The deconvolution of the latter spectra was aided by homonuclear J-resolved and refocused INADEQUATE techniques. The combined analyses of P-31 MAS NMR and O-1s XPS lineshapes, taking charge and mass balance considerations into account, yield the detailed quantitative speciations of the phosphorus, germanium, and oxygen atoms and their respective connectivities. An internally consistent description is possible without invoking the formation of higher-coordinated germanium species in these glasses, in agreement with experimental evidence in the literature. The structure can be regarded, to a first approximation, as a network consisting of P-(2) and P-(3) tetrahedra linked via four-coordinate germanium. As implied by the appearance of P-(3) units, there is a moderate extent of network modifier sharing between phosphate and germanate network formers, as expressed by the formal melt reaction P-(2) + Ge-(4) -> P-(3) + Ge-(3). The equilibrium constant of this reaction is estimated as K = 0.52 +/- 0.11, indicating a preferential attraction of network modifier by the phosphorus component. These conclusions are qualitatively supported by Raman spectroscopy as well as P-31{Na-23} and P-31{Na-23} rotational echo double resonance (REDOR) NMR results. The combined interpretation of O-1s XPS and P-31 MAS NMR spectra shows further that there are clear deviations from a random connectivity scenario: heteroatomic P-O-Ge linkages are favored over homoatomic P-O-P and Ge-O-Ge linkages.
Resumo:
The role of the Sm3+ ions in the structure of vitreous Sm2O3•4P2O5 has been investigated using the neutron diffraction anomalous dispersion technique, which employs the wavelength dependence of the real and imaginary parts of the neutron scattering length close to an absorption resonance. The data described here represent the first successful complete neutron anomalous dispersion study on an amorphous material. This experimental methodology permits one to determine exclusively the closest Sm• •• Sm separation. Knowledge of the R•••R (R = rare-earth) pairwise correlation is key to understanding the optical and magnetic properties of rare-earth phosphate glasses. The anomalous difference correlation function, ΔT''(r), shows a dominant feature pertaining to a Sm•••Sm separation, centred at 4.8 Å. The substantial width and marked asymmetry of this peak indicates that the minimum approach of Sm3+ ions could be as close as 4 Å. Information on other pairwise correlations is also revealed via analysis of T (r) and ΔT (r) correlation functions: Sm3+ ions display an average co-ordination number, n Sm(O), of 7, with a mean Sm–O bond length of 2.375(5) Å whilst the PO4 tetrahedra have a mean P–O bond length of 1.538(2) Å. Second- and third-neighbour correlations are also identified. These results corroborate previous findings. Such consistency lends support to the application of the anomalous dispersion technique to determine separations.
Resumo:
Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.
Resumo:
采用溶胶-凝胶方法制备(CH3)2Si(OC2H5)2预聚体涂膜液以及掺入SiO2悬胶体涂膜液改性,采用旋转法在掺钕磷酸盐激光玻璃棒端面涂制防潮膜,热处理后膜层固化。SiO2改性的CH3O防潮膜,热处理后的膜层耐摩擦性能明显改善。然后旋转涂制第二层多空性SiO2减反膜,涂膜胶体通过硅酸乙脂碱催化水解缩聚制得,减反膜的折射率为约1.25,玻璃棒涂膜后激光波长1053nm减少表面反射率6.5%-7.5%,双层膜激光破坏阈值12J/cm^2,1053nm/1ns,膜层表面粗糙度(RMS)2.523nm。直径20
Resumo:
散粒磨料研磨与固着磨料研磨是光学研磨加工过程中的两种主要手段,但两者材料去除的机制不同。目前针对高功率固体激光装置中的主要工作物质——磷酸盐激光钕玻璃的亚表面缺陷(SSD)研究相对较少,因此在实验的基础上,通过系统地研究固着磨料对磷酸盐激光钕玻璃的研磨工艺过程,分析了多种因素,如磨料粒径、载荷大小、机床转速,以及结合剂材料与冷却液等对钕玻璃亚表面缺陷形成的影响,并与散粒磨料研磨工艺所产生的亚表面缺陷进行了比较,对关键工艺参数进行定量,为高质量钕玻璃制造工艺的选型以及进一步优化亚表面缺陷提供了重要的参考数据。
Resumo:
在理论分析的基础上,具体讨论了Fe质量分数小于10^-4对1053nm处光吸收损耗和Nd^3+无辐射跃迁几率的影响规律,发现Fe在1053nm处的光吸收损耗和Nd^3+无辐射跃迁能量转移都与Fe质量分数成平方关系增长,Fe对1053nm光吸收的影响较大而Fe与Nd^3+之间的能量转移不足50Hz。这对生产过程中Fe含量的控制有重要指导意义。
Resumo:
研究了Cr^3+,Yb^3+,Er^3+共掺磷酸盐铒玻璃转镜调Q激光性质.三种Er2O3掺杂浓度的激光实验结果表明,在Er2O3名义掺杂浓度为0.5wt%时,玻璃的综合激光性质最好,重复频率为0.1Hz时,它的激光阈值功率为14.5mJ,最大输出能量为9.6mJ,斜率效率为0.55%.在同种实验条件下,比较了Cr14和Kigre公司生产的QE-7S激光性质参数,实验表明,前者激光阈值功率稍低,而后者的斜率效率和最大输出功率略高.
Resumo:
制备了Er^3+/Yb^3+共掺磷酸盐玻璃. 通过分析其吸收光谱, 根据McCumber理论计算得到了Er^3+离子在波长1533 nm处的峰值发射截面为0.84×10^-20 cm^2, ^4I13/2能级的荧光寿命为8.5 ms. 利用激光二极管作为泵浦源, 成功地实现了Er^3+/Yb^3+共掺磷酸盐玻璃激光器的连续运转. 在室温下, 获得最大激光输出功率为80 mW, 斜率效率为16.5%.
Resumo:
测定了Cr14—05铬镱铒共掺磷酸盐玻璃的主要热光参数,并测试了吸收、荧光光谱和激光性能等。结果表明该玻璃具有较好的光谱和热光性质,其激光输出性能可满足人眼安全激光测距光源应用的要求。
Resumo:
制备了不同含水量的掺铒磷酸盐玻璃,研究了各种工艺参数对反应气氛法除水效果的影响。结果表明由鼓泡气体带入的除水剂是玻璃除水的主要动力;在通气最初阶段的除水速率最快,并且提高除水温度、增大通气流量均有助于提高除水效率;结合实验从反应热力学角度讨论了除水机理,并指出在玻璃熔体中除水反应受熔体“笼效应”影响,反应速率大小取决于OH与CCl4形成偶遇对概率的大小。
Resumo:
包边技术是提高大尺寸激光玻璃饱和增益系数的关键。为获得优质包边玻璃,以CuO和CuCl分别作为Cu2+的引入物质,采用传统的玻璃熔制方法,研究了Cu2+掺杂量和不同引入物质对P2O5-ZnO-Na2O体系玻璃形成区、析晶稳定性、物化性能以及吸收系数的影响。研究结果表明,CuO和CuCl都能增大P2O5-ZnO-Na2O体系的玻璃形成区、提高玻璃样品的析晶稳定性。玻璃样品的吸收系数随Cu2+掺杂浓度的增加而明显增大,当Cu2+掺杂摩尔分数达到6%时,样品在1053 nm处的吸收系数为59.46 cm-1,基
Resumo:
Phosphate glasses 60P
Resumo:
Three kinds of Er3+-doped tellurite glasses with different hydroxyl groups are prepared by the conventional melt-quenching method. Infrared spectra are measured to estimate the exact content of OH- groups in samples. The maximum phonon energy in glasses are obtained by measuring the Raman scattering spectra. The strength parameters Omega(t) (t = 2, 4, 6) for all the samples are calculated and compared. The nonradiative decay rate of the Er3+ I-4(13/2) -> I-4(15/2) transition are calculated for the glass samples with different phonon energy and OH- group contents. Finally, the effect of OH- groups on fluorescence decay rate of Er3+ is analysed, the constant KOH-Er Of TWN, TZPL and TZL glasses are calculated to be 9.2 x 10(-19) cm(4)s(-1), 5.9 x 10(-19) cm(4)s(-1), and 3.5 x 10(-19) cm(4)s(-1), respectively.
Resumo:
测试了不同掺杂浓度和样品厚度下掺铒磷酸盐和碲酸盐玻璃的吸收光谱、荧光光谱和荧光寿命,计算了Er^3+离子在1.53μm处的吸收截面(σa)、发射截面(σe)、自发辐射跃迁概率(Arad)、辐射跃迁寿命(τrad)、以及辐射跃迁量子效率(η)等光谱参数.讨论了荧光俘获效应对掺铒磷酸盐和碲酸盐玻璃光谱性质及光谱参数的影响.结果表明即使在铒离子低掺杂浓度(0.1mol%Er2O3)下,荧光俘获效应也普遍存在于掺铒玻璃材料中,使得荧光寿命(τt)和荧光半高宽(FWHM)随样品的厚度和铒离子掺杂浓度增加而增大,导致