997 resultados para Phosphate gel


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND The use of an enamel matrix derivative (EMD) has been shown to enhance periodontal regeneration (e.g., formation of root cementum, periodontal ligament, and alveolar bone). However, in certain clinical situations, the use of EMD alone may not be sufficient to prevent flap collapse or provide sufficient stability of the blood clot. Data from clinical and preclinical studies have demonstrated controversial results after application of EMD combined with different types of bone grafting materials in periodontal regenerative procedures. The aim of the present study is to investigate the adsorption properties of enamel matrix proteins to bone grafts after surface coating with either EMD (as a liquid formulation) or EMD (as a gel formulation). METHODS Three different types of grafting materials, including a natural bone mineral (NBM), demineralized freeze-dried bone allograft (DFDBA), or a calcium phosphate (CaP), were coated with either EMD liquid or EMD gel. Samples were analyzed by scanning electron microscopy or transmission electron microscopy (TEM) using an immunostaining assay with gold-conjugated anti-EMD antibody. Total protein adsorption to bone grafting material was quantified using an enzyme-linked immunosorbent assay (ELISA) kit for amelogenin. RESULTS The adsorption of amelogenin to the surface of grafting material varied substantially based on the carrier system used. EMD gel adsorbed less protein to the surface of grafting particles, which easily dissociated from the graft surface after phosphate-buffered saline rinsing. Analyses by TEM revealed that adsorption of amelogenin proteins were significantly farther from the grafting material surface, likely a result of the thick polyglycolic acid gel carrier. ELISA protein quantification assay demonstrated that the combination of EMD liquid + NBM and EMD liquid + DFDBA adsorbed higher amounts of amelogenin than all other treatment modalities. Furthermore, amelogenin proteins delivered by EMD liquid were able to penetrate the porous surface structure of NBM and DFDBA and adsorb to the interior of bone grafting particles. Grafting materials coated with EMD gel adsorbed more frequently to the exterior of grafting particles with little interior penetration. CONCLUSIONS The present study demonstrates a large variability of adsorbed amelogenin to the surface of bone grafting materials when enamel matrix proteins were delivered in either a liquid formulation or gel carrier. Furthermore, differences in amelogenin adsorption were observed among NBM, DFDBA, and biphasic CaP particles. Thus, the potential for a liquid carrier system for EMD, used to coat EMD, may be advantageous for better surface coating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A UV-induced mutation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPD) was characterized in the CHO clone A24. The asymmetric 4-banded zymogram and an in vitro GAPD activity equal to that of wild type cells were not consistent with models of a mutant heterozygote producing equal amounts of wild type and either catalytically active or inactive mutant subunits that interacted randomly. Cumulative evidence indicated that the site of the mutation was the GAPD structural locus expressed in CHO wild type cells, and that the mutant allele coded for a subunit that differed from the wild type subunit in stability and kinetics. The evidence included the appearance of a fifth band, the putative mutant homotetramer, after addition of the substrate glyceraldehyde-3-phosphate (GAP) to the gel matrix; dilution experiments indicating stability differences between the subunits; experiments with subsaturating levels of GAP indicating differences in affinity for the substrate; GAPD zymograms of A24 x mouse hybrids that were consistent with the presence of two distinct A24 subunits; independent segregation of A24 wild type and mutant electrophoretic bands from the hybrids, which was inconsistent with models of mutation of a locus involved in posttranslational modification; the mapping of both wild type and mutant forms of GAPD to chromosome 8; and the failure to detect any evidence of posttranslational modification (of other A24 isozymes, or through mixing of homogenates of A24 and mouse).^ The extent of skewing of the zymogram toward the wild type band, and the unreduced in vitro activity were inconsistent with models based solely on differences in activity of the two subunits. Comparison of wild type homotetramer bands in wild type cells and A24 suggested the latter had a preponderance of wild type subunits over mutant subunits, and had more GAPD tetramers than did CHO controls.^ Two CHO linkages, GAPD-triose phosphate isomerase, and acid phosphatase 2-adenosine deaminase were reported provisionally, and several others were confirmed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accumulation of the disaccharide trehalose in anhydrobiotic organisms allows them to survive severe environmental stress. A plant cDNA, SlTPS1, encoding a 109-kD protein, was isolated from the resurrection plant Selaginella lepidophylla, which accumulates high levels of trehalose. Protein-sequence comparison showed that SlTPS1 shares high similarity to trehalose-6-phosphate synthase genes from prokaryotes and eukaryotes. SlTPS1 mRNA was constitutively expressed in S. lepidophylla. DNA gel-blot analysis indicated that SlTPS1 is present as a single-copy gene. Transformation of a Saccharomyces cerevisiae tps1Δ mutant disrupted in the ScTPS1 gene with S. lepidophylla SlTPS1 restored growth on fermentable sugars and the synthesis of trehalose at high levels. Moreover, the SlTPS1 gene introduced into the tps1Δ mutant was able to complement both deficiencies: sensitivity to sublethal heat treatment at 39°C and induced thermotolerance at 50°C. The osmosensitive phenotype of the yeast tps1Δ mutant grown in NaCl and sorbitol was also restored by the SlTPS1 gene. Thus, SlTPS1 protein is a functional plant homolog capable of sustaining trehalose biosynthesis and could play a major role in stress tolerance in S. lepidophylla.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have achieved, to our knowledge, the first high-level heterologous expression of the gene encoding d-ribulose-5-phosphate 3-epimerase from any source, thereby permitting isolation and characterization of the epimerase as found in photosynthetic organisms. The extremely labile recombinant spinach (Spinacia oleracea L.) enzyme was stabilized by dl-α-glycerophosphate or ethanol and destabilized by d-ribulose-5-phosphate or 2-mercaptoethanol. Despite this lability, the unprecedentedly high specific activity of the purified material indicates that the structural integrity of the enzyme is maintained throughout isolation. Ethylenediaminetetraacetate and divalent metal cations did not affect epimerase activity, thereby excluding a requirement for the latter in catalysis. As deduced from the sequence of the cloned spinach gene and the electrophoretic mobility under denaturing conditions of the purified recombinant enzyme, its 25-kD subunit size was about the same as that of the corresponding epimerases of yeast and mammals. However, in contrast to these other species, the recombinant spinach enzyme was octameric rather than dimeric, as assessed by gel filtration and polyacrylamide gel electrophoresis under nondenaturing conditions. Western-blot analyses with antibodies to the purified recombinant enzyme confirmed that the epimerase extracted from spinach leaves is also octameric.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zirconium phosphate has been extensively studied as a proton conductor for proton exchange membrane (PEM) fuel cell applications. Here we report the synthesis of mesoporous, templated sol-gel zirconium phosphate for use in PEM applications in an effort to determine its suitability for use as a surface functionalised, solid acid proton conductor in the future. Mesoporous zirconium phosphates were synthesised using an acid-base pair mechanism with surface areas between 78 and 177 m(2) g(-1) and controlled pore sizes in the range of 2-4 nm. TEM characterisation confirmed the presence of a wormhole like pore structure. The conductivity of such materials was up to 4.1 x 10(-6) S cm(-1) at 22degreesC and 84% relative humidity (RH), while humidity reduction resulted in a conductivity decrease by more than an order of magnitude. High temperature testing on the samples confirmed their dependence on hydration for proton conduction and low hydroscopic nature. It was concluded that while the conductivity of these materials is low compared to Nafion, they may be a good candidate as a surface functionalised solid acid proton conductor due to their high surface area, porous structure and inherent ability to conduct protons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium phosphate is currently a promising material for proton exchange membrane fuel cells applications (PEMFC) allowing for operation at high temperature conditions. In this work, titanium phosphate was synthesized from tetra iso-propoxide (TTIP) and orthophosphoric acid (H3PO4) in different ratios by a sol gel method. High BET surface areas of 271 m(2).g(-1) were obtained for equimolar Ti:P samples whilst reduced surface areas were observed by varying the molar ratio either way. Highest proton conductivity of 5.4 x 10(-2) S.cm(-1) was measured at 20 degrees C and 93% relative humidity (RH). However, no correlation was observed between surface area and proton conductivity. High proton conductivity was directly attributed to hydrogen bonding in P-OH groups and the water molecules retained in the sample structure. The proton conductivity increased with relative humidity, indicating that the Grotthuss mechanism governed proton transport. Further, sample Ti/P with 1:9 molar ratio showed proton conductivity in the order of 10(-1) S.cm(-1) (5% RH) and similar to 1.6x10(-2) S.cm(-1) (anhydrous condition) at 200 degrees C. These proton conductivities were mainly attributed to excess acid locked into the functionalized TiP structure, thus forming ionisable protons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soluble linear (non-cross-linked) poly(monoacryloxyethyl phosphate) (PMAEP) and poly(2-(methacryloyloxy)ethyl phosphate) (PMOEP) were successfully synthesized through reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization and by keeping the molecular weight below 20 K. Above this molecular weight, insoluble (cross-linked) polymers were observed, postulated to be due to residual diene (cross-linkable) monomers formed during purification of the monomers, MOEP and MAEP. Block copolymers consisting of PMAEP or PMOEP and poly(2-(acetoacetoxy) ethyl methacrylate) (PAAEMA) were successfully prepared and were immobilized on aminated slides. Simulated body fluid studies revealed that calcium phosphate (CaP) minerals formed on both the soluble polymers and the cross-linked gels were very similar. Both the PMAEP polymers and the PMOEP gel showed a CaP layer most probably brushite or monetite based on the Ca/P ratios. A secondary CaP mineral growth with a typical hydroxyapatite (HAP) globular morphology was found on the PMOEP gel. The soluble PMOEP film formed carbonated HAP according to Fourier transform infrared (FTIR) spectroscopy. Block copolymers attached to aminated slides showed only patchy mineralization, possibly due to the ionic interaction of negatively charged phosphate groups and protonated amines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atomic scale structure of sodium borophosphates made by the sol-gel method is compared to those made by the melt-quench method. It is found that although the sol-gel generated materials have a higher tendency towards crystallization, they nevertheless show a qualitatively similar crystallization trend with composition to their melt-quench analogues; the progressive introduction of boron oxide into the phosphate network initially inhibits then promotes crystallization. At the composition associated with the most stable amorphous sodium borophosphate (20 mol% boron oxide), it is found that the atomic scale structure of the sol-gel synthesized network glass is almost identical to that of the corresponding melt-quenched one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work has highlighted the potential of sol-gel-derived calcium silicate glasses for the regeneration or replacement of damaged bone tissue. The work presented herein provides new insight into the processing of bioactive calcia-silica sol-gel foams, and the reaction mechanisms associated with them when immersed in vitro in a simulated body fluid (SBF). Small-angle X-ray scattering and wide-angle X-ray scattering (diffraction) have been used to study the stabilization of these foams via heat treatment, with analogous in situ time-resolved data being gathered for a foam immersed in SBF. During thermal processing, pore sizes have been identified in the range of 16.5-62.0 nm and are only present once foams have been heated to 400 degrees C and above. Calcium nitrate crystallites were present until foams were heated to 600 degrees C; the crystallite size varied from 75 to 145 nm and increased in size with heat treatment up to 300 degrees C, then decreased in size down to 95 rim at 400 degrees C. The in situ time-resolved data show that the average pore diameter decreases as a function of immersion time in SBF, as calcium phosphates grow on the glass surfaces. Over the same time, Bragg peaks indicative of tricalcium phosphate were evident after only 1-h immersion time, and later, hydroxycarbonate apatite was also seen. The hydroxycarbonate apatite appears to have preferred orientation in the (h,k,0) direction.