999 resultados para Philippine Sea slab


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petrological, mineralogical and chemical investigations of marine manganese nodules from the West Pacific revealed the intimate relation between the chemical and mineral compositions and the remarkable preferential partitioning of metal elements in the ferromanganese minerals. The microscopic observations of textures of manganese nodules tell the growth history of manganese nodules and the formation conditions of ferromanganese minerals. Chemical compositions of nodules from Komahashi-Daini Seamount are very similar to those of the nodules from marginal banks and seamounts. Compositional variations in the bulk composition of nodules collected from the same dredge haul are considerably small, suggesting the similarity of the growth history of individual nodules, although the contents of metal elements vary remarkably from layer to layer in a single nodule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The book is devoted to geology of the Philippine Sea floor. This region is studied most extensively among other marginal seas of the Pacific Ocean. Rocks of the sedimentary and basalt layers within this sea have been studied during five legs of D/S Glomar Challenger. International geological expedition on board R/V Dmitry Mendeleev carried out according to the Project ''Ophiolites of Continents and Comparable Rocks of the Ocean Floor''obtained unique collection of rocks from the second and third layers of the ocean crust in the Philippine Sea. The book provides detailed petrographic and geochemical description of igneous and sedimentary formations from the Philippine Sea and compares them with rocks of the continental ophiolite association. An analysis of structure and history of the ocean crust formation in the region is based on all known geological information. The main periods of tectonic movement activation and nature of their manifestations within the sea are shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fine-scale seismic structure of the central Mexico, southern Peru, and southwest Japan subduction zones is studied using intraslab earthquakes recorded by temporary and permanent regional seismic arrays. The morphology of the transition from flat to normal subduction is explored in central Mexico and southern Peru, while in southwest Japan the spatial coincidence of a thin ultra-slow velocity layer (USL) atop the flat slab with locations of slow slip events (SSEs) is explored. This USL is also observed in central Mexico and southern Peru, where its lateral extent is used as one constraint on the nature of the flat-to-normal transitions.

In western central Mexico, I find an edge to this USL which is coincident with the western boundary of the projected Orozco Fracture Zone (OFZ) region. Forward modeling of the 2D structure of the subducted Cocos plate using a finite-difference algorithm provides constraints on the velocity and geometry of the slab’s seismic structure in this region and confirms the location of the USL edge. I propose that the Cocos slab is currently fragmenting into a North Cocos plate and a South Cocos plate along the projection of the OFZ, by a process analogous to that which occurred when the Rivera plate separated from the proto-Cocos plate 10 Ma.

In eastern central Mexico, observations of a sharp transition in slab dip near the abrupt end of the Trans Mexican Volcanic Belt (TMVB) suggest a possible slab tear located within the subducted South Cocos plate. The eastern lateral extent of the USL is found to be coincident with these features and with the western boundary of a zone of decreased seismicity, indicating a change in structure which I interpret as evidence of a possible tear. Analysis of intraslab seismicity patterns and focal mechanism orientations and faulting types provides further support for a possible tear in the South Cocos slab. This potential tear, together with the tear along the projection of the OFZ to the northwest, indicates a slab rollback mechanism in which separate slab segments move independently, allowing for mantle flow between the segments.

In southern Peru, observations of a gradual increase in slab dip coupled with a lack of any gaps or vertical offsets in the intraslab seismicity suggest a smooth contortion of the slab. Concentrations of focal mechanisms at orientations which are indicative of slab bending are also observed along the change in slab geometry. The lateral extent of the USL atop the horizontal Nazca slab is found to be coincident with the margin of the projected linear continuation of the subducting Nazca Ridge, implying a causal relationship, but not a slab tear. Waveform modeling of the 2D structure in southern Peru provides constraints on the velocity and geometry of the slab’s seismic structure and confirms the absence of any tears in the slab.

In southwest Japan, I estimate the location of a possible USL along the Philippine Sea slab surface and find this region of low velocity to be coincident with locations of SSEs that have occurred in this region. I interpret the source of the possible USL in this region as fluids dehydrated from the subducting plate, forming a high pore-fluid pressure layer, which would be expected to decrease the coupling on the plate interface and promote SSEs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ecological characteristics of the deep-sea amoA-encoding archaea (AEA) are largely unsolved. Our aim was to study the diversity, structure and distribution of the AEA community in the sediments of the tropical West Pacific Continental Margin, to develop a general view of the AEA biogeography in the deep-sea extreme environment. Archaeal amoA clone libraries were constructed. Diverse and novel amoA sequences were identified, with the Bohol Sea, Bashi Strait and Sibuyan Sea harbouring the highest and the Bicol Shelf the lowest AEA diversity. Phylogenetic and statistical analyses illustrate a heterogeneous distribution of the AEA community, probably caused by the differential distribution of the terrestrial or estuarine AEA in the various sampling sites. The deep-sea sedimentary environments potentially harbour diverse and novel AEA in the tropical West Pacific Continental Margin. The stations in the Philippine inland seas (including station 3043) may represent AEA assemblages with various terrestrial influences and the stations connected directly to the open Philippine Sea may represent marine environment-dominant AEA assemblages. Our study indicates the potential importance of geological and climatic events in the transport of terrestrial micro-organisms to the deep-sea sedimentary environments, almost totally neglected previously.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We explore the tectono-magmatic processes in the western West Philippine Basin, Philippine Sea Plate, using bathymetric data acquired in 2003 and 2004. The northwestern part of the basin formed through a series of northwestward propagating rifts. We identify at least five sequences of propagating rifts, probably triggered by mantle flow away from the mantle thermal anomaly that is responsible for the origin of the Benham and Urdenata plateaus. Gravitational forces caused by along-axis topographic gradient and a similar to 30 degrees ridge reorientation appear to also be driving the rift propagations. The along-axis mantle flow appears to be reduced and deflected along the Luzon-Okinawa fracture zone, because the spreading system remained stable west of this major fault zone. North-east of the Benham plateau, a left-lateral fracture zone has turned into a NE-SW-trending spreading axis. As a result, a microplate developed at the triple junction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Quantitative studies on the evolution and dynamics of the deepwater area of Pearl River Mouth basin (PRMB) were carried out based on the latest geological and seismic data. The study area is generally in an extensional state during the Cenozoic. The major extension happened in the earlier syn-rift stages before 23 Ma and the extension after 23 Ma is negligible. Two rapid subsidence periods, 32-23 Ma and 5.3-2.6 Ma, are identified, which are related to the abrupt heat decay during margin breakup and the collision between the Philippine Sea plate and the Eurasian plate, respectively. The strongest crustal thinning in the Baiyun (sic) sag may trigger the syn-rift volcanism along the weak faulted belt around the sag. The Cenozoic tectonic evolution of the study area could be divided into five stages: rifting (similar to 50-40 Ma), rift-drift transition (similar to 40-32 Ma), early post-breakup (similar to 32-23 Ma), thermal subsidence (similar to 23-5.3 Ma) and neotectonic movement (similar to 5.3-0 Ma).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The West Philippine basin (WPB) is a currently inactive marginal basin belonging to Philippine Sea plate, which has a complex formation history and various crust structures. Based on gravity, magnetic and seismic data, the tectonics in West Philippine basin is characterized by amagma spreading stage and strike slip fractures. NNE trending Okinawa-Luzon fracture zone is a large fracture zone with apparent geomorphology and shows a right-handed movement. The results of joint gravity-magnetic-seismic inversion suggest that the Okinawa-Luzon fracture zone has intensive deformation and is a transform fault. Western existence of the NW trending fractures under Ryukyu Islands Arc is the main cause of the differences between south and north Okinawa Trough. The Urdaneta plateau is not a remained arc, but remnant of mantle plume although its lava chemistry is similar to oceanic island basalt (OIB).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous, and lower in High Field Strength Elements (HFSE). These rocks are higher in Large Ion Lithophile Elements (LILE), thorium and uranium contents, positive lead anomalies, negative Nb-Ta anomalies, and enrichment in Light Rare Earth Elements (LREE). Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB), and rhyolites from the northern Okinawa Trough have the highest Pb-207/Pb-208 and Pb-208/Pb-204 ratios. The NECS shelf margin basalts have lower Sr-87/Sr-86 ratios, epsilon(Nd) and sigma O-18 than the northern Okinawa Trough silicic rocks. According to K-40-Ar-40 isotopic ages of basalts from the NECS shelf margin, rifting of the Okinawa Trough may have been active since at least 3.65-3.86 Ma. The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere. The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough, and the formation of basaltic magmas closely relates to the thinning of continental crust. The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough, which could have been generated by the interaction of basaltic melt with an enriched crustal component. From the Ryukyu island arc to East China, the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE), suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate, and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Clay mineral assemblages, crystallinity, chemistry, and micromorphology of clay particles in sediments from ODP Site 1146 in the northern South China Sea (SCS) were analyzed, and used to trace sediment sources and obtain proxy records of the past changes in the East Asian monsoon climate since the Miocene, based on a multi-approach, including X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray spectrometry (SEM-EDS). Clay minerals consist mainly of illite and smectite, with associated chlorite and kaolinite. The illite at ODP Site 1146 has very well-to-well crystallinity, and smectite has moderate-to-poor crystallinity. In SEM the smectite particles at ODP Site 1146 often appear cauliflower-like, a typical micromorphology of volcanic smecites. The smectite at ODP Site 1146 is relatively rich in Si element, but poor in Fe, very similar to the smectite from the West Philippine Sea. In contrast, the chemical composition of illite at ODP Site 1146 has no obvious differences from those of the Loess plateau, Yellow River, Yangtze River, and Pearl River. A further study on sediment source indicates that smectite originates mainly from Luzon, kaolinite from the Pearl River, and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The clay mineral assemblages at ODP Site 1146 were not only controlled by continental eathering regimes surrounding the SCS, but also by the changing strength of the transport processes. The ratios of (illite+chlorite)/smectite at ODP Site 1146 were adopted as proxies for the East Asian monsoon evolution. Relatively higher ratios reflect strongly intensified winter monsoon relative to summer monsoon, in contrast, lower ratios indicate a strengthened summer monsoon relative to winter monsoon. The consistent variation of this clay proxy from those of Loess plateau, eolian deposition in the North Pacific, planktonic, benthic foraminifera, and black carbon in the SCS since 20 Ma shows that three profound shifts of the East Asian winter monsoon intensity, and aridity in the Asian inland and the intensity of winter monsoon relative to summer monsoon, occurred at about 15 Ma, 8 Ma, and the younger at about 3 Ma. The phased uplift of the Himalaya-Tibetan plateau may have played a significant role in strengthening the Asian monsoon at 15 Ma, 8 Ma, and 3 Ma.