96 resultados para Phagocyte


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The localization of peroxidase activity in different cell regions is used as a criterion for classifying the stage of maturity of mammalian mononuclear phagocytes, with a positive peroxidase reaction indicating the presence of monoblasts, promonocytes, monocytes, and macrophages. Peroxidase activity was observed ultrastructurally in the circulating blood of pacu fish (Piaractus mesopotamicus), identifying monoblasts, promonocytes, monocytes, and macrophages. These observations suggest that differentiation of mononuclear phagocytes occurs in the blood circulation of fish, whereas in mammals, monoblasts and promonocytes are detected in bone marrow, with only monocytes detected in circulating blood and differentiation into macrophages occurring in other body compartments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms used by Paracoccidioides brasiliensis to survive into phagocytic cells are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Thus, the objective of this paper was to investigate the role of intracellular iron in regulating the capacity of P. brasiliensis yeast cells to survive within human monocytes. Treatment of monocytes with deferoxamine, an iron chelator, suppressed the survival of yeasts in a concentration-dependent manner. The effect of deferoxamine was reversed by iron-saturated transferrin (holotransferrin) but not by nonsaturated transferrin (apotransferrin). These results strongly suggest that P. brasiliensis survival in human monocytes is iron dependent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidiodes brasiliensis that presents a wide spectrum of clinical manifestations. Because of the great number of neutrophils polymorphonuclear neutrophils (PMN) found in the P. brasiliensis granuloma, studies have been done to evaluate the role of these cells during the development of the infection. This fungus is found intracellularly in PMN and monocytes/macrophages, suggesting that it is capable of evading damage and surviving inside these cells. Thus, in the present study, we investigated whether P. brasiliensis can prolong the lifetime of PMN, and if this process would be related with IL-8 levels. PMN apoptosis and intracellular levels of IL-8 were analysed by flow cytometry and culture supernatants IL-8 levels were evaluated by enzyme-linked immunosorbent assay. We found that coincubation with P. brasiliensis yeast cells results in an inhibition of PMN apoptosis, which was associated with increase in IL-8 production by these cells. Cocultures treatment with monoclonal antibody anti-IL-8 reversed the inhibitory effect of P. brasiliensis on PMN apoptosis, besides to increase spontaneous apoptosis of these cells. These data show that, in contrast to other microbial pathogens that drive phagocytes into apoptosis to escape killing, P. brasiliensis can extend the lifetime of normal human PMN by inducing autocrine IL-8 production. © 2008 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the role of mast cells and annexin-A1 (Anxa1) in endotoxin-induced uveitis (EIU). Methods: EIU was induced by injection of lipopolysaccharide (LPS) into the paws of rats, which were then sacrificed after 24 and 48 h. To assess EIU in the absence of mast cells, groups of animals were pretreated with compound 48/80 (c48/80) and sacrificed after 24 h after no treatment or EIU induction. The eyes were used for histological studies and the aqueous humor (AqH) pool was used for the analysis of transmigrated cells and Anxa1 levels. In inflammatory cells, Anxa1 expression was monitored by immunohistochemistry. Results: After 24 h, rats with EIU exhibited degranulated mast cells, associated with elevated numbers of infiltrating leukocytes and the high expression of Anxa1 in the AqH and the neutrophils. After 48 h of EIU, the mast cells were intact, indicating granule re-synthesis, and there was a reduction of neutrophil transmigration and an increase in the number of mononuclear phagocytic cells in ocular tissues. Anxa1 expression was decreased in neutrophils but increased in mononuclear phagocytic cells. In the animals pretreated with c48/80 and subjected to EIU, mast cells responded to this secretagogue by degranulating and few transmigrated neutrophils were observed. Conclustions: We report that mast cells are a potential source of pharmacological mediators that are strongly linked to the pathophysiology of EIU, and the endogenous protein Anxa1 is a mediator in the homeostasis of the inflammatory process with anti-migratory effects on leukocytes, which supports further studies of this protein as an innovative therapy for uveitis. © 2011 Molecular Vision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incidence of fungal infections has increased significantly, so contributing to morbidity and mortality. This is caused by an increase in antimicrobial resistance and the restricted number of antifungal drugs, which retain many side effects. Candida species are major human fungal pathogens that cause both mucosal and deep tissue infections. Recent evidence suggests that the majority of infections produced by this pathogen are associated with biofilm growth. Biofilms are biological communities with a high degree of organization, in which micro-organisms form structured, coordinated and functional communities. These biological communities are embedded in a self-created extracellular matrix. Biofilm production is also associated with a high level of antimicrobial resistance of the associated organisms. The ability of Candida species to form drugresistant biofilms is an important factor in their contribution to human disease. The study of plants as an alternative to other forms of drug discovery has attracted great attention because, according to the World Health Organization, these would be the best sources for obtaining a wide variety of drugs and could benefit a large population. Furthermore, silver nanoparticles, antibodies and photodynamic inactivation have also been used with good results. This article presents a brief review of the literature regarding the epidemiology of Candida species, as well as their pathogenicity and ability to form biofilms, the antifungal activity of natural products and other therapeutic options. © 2013 SGM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melatonin is involved in a number of physiological and oxidative processes, including functional regulation in human milk. The present study investigated the mechanisms of action of melatonin and its effects on the functional activity of colostral phagocytes in diabetic women. Colostrum samples were collected from normoglycemic (N = 38) and diabetic (N = 38) women. We determined melatonin concentration, superoxide release, bactericidal activity and intracellular Ca2+ release by colostral phagocytes treated or not with 8-(Diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) and incubated with melatonin and its precursor (N-acetyl-serotonin-NAS), antagonist (luzindole) and agonist (chloromelatonin-CMLT). Melatonin concentration was higher in colostrum samples from hyperglycemic than normoglycemic mothers. Melatonin stimulated superoxide release by colostral phagocytes from normoglycemic but not hyperglycemic women. NAS increased superoxide, irrespective of glycemic status, whereas CMTL increased superoxide only in cells from the normoglycemic group. Phagocytic activity in colostrum increased significantly in the presence of melatonin, NAS and CMLT, irrespective of glycemic status. The bactericidal activity of colostral phagocytes against enterophatogenic Escherichia coli (EPEC) increased in the presence of melatonin or NAS in the normoglycemic group, but not in the hyperglycemic group. Luzindole blocked melatonin action on colostrum phagocytes. Phagocytes from the normoglycemic group treated with melatonin exhibited an increase in intracellular Ca2+ release. Phagocytes treated with TMB-8 (intracellular Ca2+ inhibitor) decreased superoxide, bactericidal activity and intracellular Ca2+ release in both groups. The results obtained suggest an interactive effect of glucose metabolism and melatonin on colostral phagocytes. In colostral phagocytes from normoglycemic mothers, melatonin likely increases the ability of colostrum to protect against EPEC and other infections. In diabetic mothers, because maternal hyperglycemia modifies the functional activity of colostrum phagocytes, melatonin effects are likely limited to anti-inflammatory processes, with low superoxide release and bactericidal activity. © 2013 Morceli et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Candidemia is a severe fungal infection that primarily affects hospitalized and/or immunocompromised patients. Mononuclear phagocytes have been recognized as pivotal immune cells which act in the recognition of pathogens, phagocytosis, inflammation, polarization of adaptive immune response and tissue repair. Experimental studies have showed that the systemic candidiasis could be controlled by activated peritoneal macrophages. However, the mechanism to explain how these cells act in distant tissue during a systemic fungal infection is still to be elucidated. In the present study we investigate the in vivo trafficking of phagocytic peritoneal cells into infected organs in hypoinsulinemic-hyperglycemic (HH) mice with systemic candidiasis. Methods: The red fluorescent vital dye PKH-26 PCL was injected into the peritoneal cavity of Swiss mice 24 hours before the intravenous inoculation with Candida albicans. After 24 and 48 hours and 7 days of infection, samples of the spleen, liver, kidneys, brain and lungs were submitted to the microbiological evaluation as well as to phagocytic peritoneal cell trafficking analyses by fluorescence microscopy. Results: In the present study, PKH+ cells were observed in the peritoneum, kidney, spleen and liver samples from all groups. In infected mice, we also found PKH+ cells in the lung and brain. The HH condition did not affect this process. Conclusions: In the present study we have observed that peritoneal phagocytes migrate to tissues infected by C. albicans and the HH condition did not interfere in this process. © 2013 Fraga-Silva et al.; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paracoccidioidomycosis is a human systemic mycosis caused by the fungus Paracoccidioides brasiliensis. The mechanisms involved in innate immune response to this fungus are not fully elucidated. Leukotrienes are known to be critical for the clearance of various microorganisms, mainly by mediating the microbicidal function of phagocytes. We investigated the involvement of leukotriene B4 in the early stages of experimental paracoccidioidomycosis, which was induced by intratracheal inoculation of the fungus in selected mouse lines. The mouse lines utilized were produced through bi-directional phenotypic selection, endowed with maximal or minimal acute inflammatory reactivity, and designated AIRmax and AIRmin, respectively. AIRmax mice were more resistant to the infection, which was demonstrated by reduced lung fungal loads. However, the two lines produced similar amounts of leukotriene B4, and pharmacological inhibition of this mediator provoked similar fungal load increases in the two lines. The lower fungal load in the AIRmax mice was associated with a more effective inflammatory response, which was characterized by enhanced recruitment and activation of phagocytic cells and an increased production of activator cytokines. This process resulted in an increased release of fungicidal molecules and a diminution of fungal load. In both lines, leukotriene production was associated with a protective response in the lung that was consequent to the effect of this eicosanoid on the influx and activation of phagocytes. © 2013 ISHAM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Naringenin and quercetin are considered antioxidant compounds with promising activity against oxidative damage in human cells. However, no reports have described their effects on reactive oxygen species (ROS) production by phagocytes during microbicidal activity. Thus, the present study evaluated the effects of naringenin and quercetin on ROS production, specifically hypochlorous acid (HOCl), and their involvement in the microbicidal activity of neutrophils. Naringenin and quercetin inhibited HOCl production through different systems, but this inhibition was more pronounced for quercetin, even in the cell-free systems. With regard to the microbicidal activity of neutrophils, both naringenin and quercetin completely inhibited the killing of Staphylococcus aureus. Altogether, these data indicate that the decrease in the oxidant activity of neutrophils induced by these compounds directly impaired the microbicidal activity of neutrophils. Naringenin and quercetin exerted their effects by controlling the effector mechanisms of ROS production, with both positive and negative effects of these antioxidant agents in oxidative stress conditions and on ROS in the microbicidal activity of phagocytes. The present results challenge the traditional view of antioxidants as improvers of pathological conditions. © 2013 Francielli de Cássia Yukari Nishimura et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FMVZ