935 resultados para Permutation-Symmetric Covariance
Resumo:
Asymmetric rolling of commercially pure magnesium was carried out at three different temperatures: room temperature, 200 degrees C and 350 degrees C. Systematic analysis of microstructures, grain size distributions, texture and misorientation distributions were performed using electron backscattered diffraction in a field emission gun scanning electron microscope. The results were compared with conventional (symmetric) rolling carried out under the same conditions of temperature and strain rate. Simulations of deformation texture evolution were performed using the viscoplastic self-consistent polycrystal plasticity model. The main trends of texture evolution are faithfully reproduced by the simulations for the tests at room temperature. The deviations that appear for the textures obtained at high temperature can be explained by the occurrence of dynamic recrystallization. Finally, the mechanisms of texture evolution in magnesium during asymmetric and symmetric rolling are explained with the help of ideal orientations, grain velocity fields and divergence maps displayed in orientation space.
Resumo:
Nanoporous carbon (NPC) materials with high specific surface area have attracted considerable attention for electrochemical energy storage applications. In the present work, we have designed novel symmetric supercapacitors based on NPC by direct carbonization of Zn-based metal-organic frameworks (MOFs) without using an additional precursor. By controlling the reaction conditions in the present study, we synthesized NPC with two different particle sizes. The effects of particle size and mass loadings on supercapacitor performance have been carefully evaluated. Our NPC materials exhibit excellent electrochemical performance with a maximum specific capacitance of 251 F g-1 in 1 M H2SO4 electrolyte. The symmetric supercapacitor studies show that these efficient electrodes have good capacitance, high stability, and good rate capability.
Resumo:
We report formation of new noncentrosymmetric oxides of the formula, R3Mn1.5CuV0.5O9 for R = Y, Ho, Er, Tm, Yb and Lu, possessing the hexagonal RMnO3 (space group P6(3)cm) structure. These oxides could be regarded as the x = 0.5 members of a general series R3Mn3-3xCu2xVxO9. Investigation of the Lu-Mn-Cu-V-O system reveals the existence of isostructural solid solution series, Lu3Mn3-3xCu2xVxO9 for 0 < x <= 0.75. Magnetic and dielectric properties of the oxides are consistent with a random distribution of Mn3+, Cu2+ and V5+ atoms that preserve the noncentrosymmetric RMnO3 structure. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The problem of a long, thin circular cylindrical shell enclosed in an elastic casing and subjected to a ring of radial load on the inner rim is solved using the Love function for the casing in conjunction with Flügge shell theory. Numerical work has been done with a digital computer and the results for stress and displacement fields are given for various values of the shell geometry parameters and material constants.
Resumo:
Aims: Develop and validate tools to estimate residual noise covariance in Planck frequency maps. Quantify signal error effects and compare different techniques to produce low-resolution maps. Methods: We derive analytical estimates of covariance of the residual noise contained in low-resolution maps produced using a number of map-making approaches. We test these analytical predictions using Monte Carlo simulations and their impact on angular power spectrum estimation. We use simulations to quantify the level of signal errors incurred in different resolution downgrading schemes considered in this work. Results: We find an excellent agreement between the optimal residual noise covariance matrices and Monte Carlo noise maps. For destriping map-makers, the extent of agreement is dictated by the knee frequency of the correlated noise component and the chosen baseline offset length. The significance of signal striping is shown to be insignificant when properly dealt with. In map resolution downgrading, we find that a carefully selected window function is required to reduce aliasing to the sub-percent level at multipoles, ell > 2Nside, where Nside is the HEALPix resolution parameter. We show that sufficient characterization of the residual noise is unavoidable if one is to draw reliable contraints on large scale anisotropy. Conclusions: We have described how to compute the low-resolution maps, with a controlled sky signal level, and a reliable estimate of covariance of the residual noise. We have also presented a method to smooth the residual noise covariance matrices to describe the noise correlations in smoothed, bandwidth limited maps.
Resumo:
A detailed investigation of the natural frequencies and mode shapes of simply supported symmetric trapezoidal plates is undertaken in this paper. For numerical calculations, the relationship that exists between the eigenvalue problem of a polygonal simply supported plate and the eigenvalue problem of polygonal membrane of the same shape is utilized with advantage. The deflection surface is expressed in terms of a Fourier sine series in transformed coordinates and the Galerkin method is used. Results are presented in the form of tables and graphs. Several features like the crossing of frequency curves and the metamorphosis of some of the nodal patterns are observed. By a suitable interpretation of the modes of those symmetric trapezoidal plates which have the median as the nodal line, the results for some of the modes of unsymmetrical trapezoidal plates are also deduced.
Resumo:
Volatile organic compounds (VOCs) are emitted into the atmosphere from natural and anthropogenic sources, vegetation being the dominant source on a global scale. Some of these reactive compounds are deemed major contributors or inhibitors to aerosol particle formation and growth, thus making VOC measurements essential for current climate change research. This thesis discusses ecosystem scale VOC fluxes measured above a boreal Scots pine dominated forest in southern Finland. The flux measurements were performed using the micrometeorological disjunct eddy covariance (DEC) method combined with proton transfer reaction mass spectrometry (PTR-MS), which is an online technique for measuring VOC concentrations. The measurement, calibration, and calculation procedures developed in this work proved to be well suited to long-term VOC concentration and flux measurements with PTR-MS. A new averaging approach based on running averaged covariance functions improved the determination of the lag time between wind and concentration measurements, which is a common challenge in DEC when measuring fluxes near the detection limit. The ecosystem scale emissions of methanol, acetaldehyde, and acetone were substantial. These three oxygenated VOCs made up about half of the total emissions, with the rest comprised of monoterpenes. Contrary to the traditional assumption that monoterpene emissions from Scots pine originate mainly as evaporation from specialized storage pools, the DEC measurements indicated a significant contribution from de novo biosynthesis to the ecosystem scale monoterpene emissions. This thesis offers practical guidelines for long-term DEC measurements with PTR-MS. In particular, the new averaging approach to the lag time determination seems useful in the automation of DEC flux calculations. Seasonal variation in the monoterpene biosynthesis and the detailed structure of a revised hybrid algorithm, describing both de novo and pool emissions, should be determined in further studies to improve biological realism in the modelling of monoterpene emissions from Scots pine forests. The increasing number of DEC measurements of oxygenated VOCs will probably enable better estimates of the role of these compounds in plant physiology and tropospheric chemistry. Keywords: disjunct eddy covariance, lag time determination, long-term flux measurements, proton transfer reaction mass spectrometry, Scots pine forests, volatile organic compounds
Resumo:
In this paper, the steady laminar viscous hypersonic flow of an electrically conducting fluid in the region of the stagnation point of an insulating blunt body in the presence of a radial magnetic field is studied by similarity solution approach, taking into account the variation of the product of density and viscosity across the boundary layer. The two coupled non-linear ordinary differential equations are solved simultaneously using Runge-Kutta-Gill method. It has been found that the effect of the variation of the product of density and viscosity on skin friction coefficient and Nusselt number is appreciable. The skin friction coefficient increases but Nusselt number decreases as the magnetic field or the total enthalpy at the wall increases
Resumo:
We propose a unified model for large signal and small signal non-quasi-static analysis of long channel symmetric double gate MOSFET. The model is physics based and relies only on the very basic approximation needed for a charge-based model. It is based on the EKV formalism Enz C, Vittoz EA. Charge based MOS transistor modeling. Wiley; 2006] and is valid in all regions of operation and thus suitable for RF circuit design. Proposed model is verified with professional numerical device simulator and excellent agreement is found. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We consider convolution equations of the type f * T = g, where f, g is an element of L-P (R-n) and T is a compactly supported distribution. Under natural assumptions on the zero set of the Fourier transform of T, we show that f is compactly supported, provided g is. Similar results are proved for non-compact symmetric spaces as well. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A real or a complex symmetric matrix is defined here as an equivalent symmetric matrix for a real nonsymmetric matrix if both have the same eigenvalues. An equivalent symmetric matrix is useful in computing the eigenvalues of a real nonsymmetric matrix. A procedure to compute equivalent symmetric matrices and its mathematical foundation are presented.
Resumo:
A higher-order theory of laminated composites under in-plane loads is developed. The displacement field is expanded in terms of the thickness co-ordinate, satisfying the zero shear stress condition at the surfaces of the laminate. Using the principle of virtual displacement, the governing equations and boundary conditions are established. Numerical results for interlaminar stresses arising in the case of symmetric laminates under uniform extension have been obtained and are compared with similar results available in the literature.
Resumo:
The domination and Hamilton circuit problems are of interest both in algorithm design and complexity theory. The domination problem has applications in facility location and the Hamilton circuit problem has applications in routing problems in communications and operations research.The problem of deciding if G has a dominating set of cardinality at most k, and the problem of determining if G has a Hamilton circuit are NP-Complete. Polynomial time algorithms are, however, available for a large number of restricted classes. A motivation for the study of these algorithms is that they not only give insight into the characterization of these classes but also require a variety of algorithmic techniques and data structures. So the search for efficient algorithms, for these problems in many classes still continues.A class of perfect graphs which is practically important and mathematically interesting is the class of permutation graphs. The domination problem is polynomial time solvable on permutation graphs. Algorithms that are already available are of time complexity O(n2) or more, and space complexity O(n2) on these graphs. The Hamilton circuit problem is open for this class.We present a simple O(n) time and O(n) space algorithm for the domination problem on permutation graphs. Unlike the existing algorithms, we use the concept of geometric representation of permutation graphs. Further, exploiting this geometric notion, we develop an O(n2) time and O(n) space algorithm for the Hamilton circuit problem.