994 resultados para Peptide Elongation Factors


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il est reconnu que la protéine filamenteuse intermédiaire Nestine est exprimée lors du processus de cicatrisation et du remodelage fibrotique. De plus, nous avons identifié l’expression de la Nestine au sein de deux populations distinctes qui sont directement impliquées dans les réponses de fibroses réparative et réactive. Ainsi, une population de cellules souches neurales progénitrices résidentes du coeur de rat adulte exprime la Nestine et a été identifiée à titre de substrat de l’angiogenèse et de la neurogenèse cardiaque. Également, la Nestine est exprimée par les myofibroblastes cicatriciels cardiaques et il a été établi que la protéine filamenteuse intermédiaire joue un rôle dans la prolifération de ces cellules. Ainsi, l’objectif général de cette thèse était de mieux comprendre les évènements cellulaires impliqués dans la réponse neurogénique des cellules souches neurales progénitrices résidentes cardiaques Nestine(+) (CSNPRCN(+)) lors de la fibrose réparative cardiaque et d’explorer si l’apparition de fibroblastes Nestine(+) est associée avec la réponse de fibrose réactive secondaire du remodelage pulmonaire. Une première publication nous a permis d’établir qu’il existe une régulation à la hausse de l’expression de la GAP43 (growth associated protein 43) et que cet événement transitoire précède l’acquisition d’un phénotype neuronal par les CSNPRCN(+) lors du processus de cicatrisation cardiaque chez le rat ayant subi un infarctus du myocarde. De plus, la surimposition de la condition diabétique de type 1, via l’injection unique de Streptozotocine chez le rat, abolit la réponse neurogénique des CSNPRCN(+), qui est normalement induite à la suite de l’ischémie cardiaque ou de l’administration de 6-hydroxydopamine. Le second article a démontré que le développement aigu de la fibrose pulmonaire secondaire de l’infarctus du myocarde chez le rat est associé avec une augmentation de l’expression protéique de la Nestine et de l’apparition de myofibroblastes pulmonaires Nestine(+). Également, le traitement de fibroblastes pulmonaires avec des facteurs de croissances peptidiques pro-fibrotiques a augmenté l’expression de la Nestine par ces cellules. Enfin, le développement initial de la condition diabétique de type 1 chez le rat est associé avec une absence de fibrose réactive pulmonaire et à une réduction significative des niveaux protéiques et d’ARN messager de la Nestine pulmonaire. Finalement, la troisième étude représentait quant à elle un prolongement de la deuxième étude et a alors examiné le remodelage pulmonaire chronique chez un modèle établi d’hypertension pulmonaire. Ainsi, les poumons de rats adultes mâles soumis à l’hypoxie hypobarique durant 3 semaines présentent un remodelage vasculaire, une fibrose réactive et une augmentation des niveaux d’ARN messager et de la protéine Nestine. De plus, nos résultats ont démontré que la Nestine, plutôt que l’alpha-actine du muscle lisse, est un marqueur plus approprié des diverses populations de fibroblastes pulmonaires activés. Également, nos données suggèrent que les fibroblastes pulmonaires activés proviendraient en partie de fibroblastes résidents, ainsi que des processus de transition épithélio-mésenchymateuse et de transition endothélio-mésenchymateuse. Collectivement, ces études ont démontré que des populations distinctes de cellules Nestine(+) jouent un rôle majeur dans la fibrose réparative cardiaque et la fibrose réactive pulmonaire.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have described previously a transcription-dependent induction of glycogen resynthesis by the vasoactive intestinal peptide (VIP) or noradrenaline (NA) in astrocytes, which is mediated by cAMP. Because it has been postulated that the cAMP-mediated regulation of energy balance in hepatocytes and adipocytes is channeled at least in part through the CCAAT/enhancer binding protein (C/EBP) family of transcription factors, we tested the hypothesis that C/EBP isoforms could be expressed in mouse cortical astrocytes and that their level of expression could be regulated by VIP, by the VIP-related neuropeptide pituitary adenylate cyclase-activating peptide (PACAP), or by NA. We report in this study that in these cells, C/EBP beta and C/EBP delta are induced by VIP, PACAP, or NA via the cAMP second-messenger pathway. Induction of C/EBP beta and -delta mRNA by VIP occurs in the presence of a protein synthesis inhibitor. Thus, c/ebp beta and c/ebp delta behave as cAMP-inducible immediate-early genes in astrocytes. Moreover, transfection of astrocytes with expression vectors selectively producing the transcriptionally active form of C/EBP beta, termed liver-enriched transcriptional activator protein, or C/EBP delta enhance the glycogen resynthesis elicited by NA, whereas an expression vector producing the transcriptionally inactive form of C/EBP beta, termed liver-enriched transcriptional inhibitory protein, reduces this resynthesis. These results support the idea that C/EBP beta and -delta regulate gene expression of energy metabolism-related enzymes in astrocytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Alzheimer disease (AD) the amyloid beta-peptide (A beta) accumulates in plaques in the brain. A beta can be neurotoxic by a mechanism involving induction of reactive oxygen species (ROS) and elevation of intracellular free calcium levels ([Ca2+]i). In light of evidence for an inflammatory response in the brain in AD and reports of increased levels of tumor necrosis factor (TNF) in AD brain we tested the hypothesis that TNFs affect neuronal vulnerability to A beta. A beta-(25-35) and A beta-(1-40) induced neuronal degeneration in a concentration- and time-dependent manner. Pretreatment of cultures for 24 hr with TNF-beta or TNF-alpha resulted in significant attenuation of A beta-induced neuronal degeneration. Accumulation of peroxides induced in neurons by A beta was significantly attenuated in TNF-pretreated cultures, and TNFs protected neurons against iron toxicity, suggesting that TNFs induce antioxidant pathways. The [Ca2+]i response to glutamate (quantified by fura-2 imaging) was markedly potentiated in neurons exposed to A beta, and this action of A beta was suppressed in cultures pretreated with TNFs. Electrophoretic mobility-shift assays demonstrated an induction of a kappa beta-binding activity in hippocampal cells exposed to TNFs. Exposure of cultures to I kappa B (MAD3) antisense oligonucleotides, a manipulation designed to induce NF-kappa B, mimicked the protection by TNFs. These data suggest that TNFs protect hippocampal neurons against A beta toxicity by suppressing accumulation of ROS and Ca2+ and that kappa B-dependent transcription is sufficient to mediate these effects. A modulatory role for TNF in the neurodegenerative process in AD is proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role of the eukaryotic release factor 1 (eRF1) in translation termination has previously been established in yeast; however, only limited characterization has been performed on any plant homologs. Here, we demonstrate that cosuppression of eRF1-1 in Arabidopsis (Arabidopsis thaliana) has a profound effect on plant morphology, resulting in what we term the broomhead phenotype. These plants primarily exhibit a reduction in internode elongation causing the formation of a broomhead-like cluster of malformed siliques at the top of the inflorescence stem. Histological analysis of broomhead stems revealed that cells are reduced in height and display ectopic lignification of the phloem cap cells, some phloem sieve cells, and regions of the fascicular cambium, as well as enhanced lignification of the interfascicular fibers. We also show that cell division in the fascicular cambial regions is altered, with the majority of vascular bundles containing cambial cells that are disorganized and possess enlarged nuclei. This is the first attempt at functional characterization of a release factor in vivo in plants and demonstrates the importance of eRF1-1 function in Arabidopsis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Transmitted by blood-sucking insects, the unicellular parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a malady manifested in a variety of symptoms from heart disease to digestive and urinary tract dysfunctions. The reasons for such organ preference have been a matter of great interest in the field, particularly because the parasite can invade nearly every cell line and it can be found in most tissues following an infection. Among the molecular factors that contribute to virulence is a large multigene family of proteins known as gp85/trans-sialidase, which participates in cell attachment and invasion. But whether these proteins also contribute to tissue homing had not yet been investigated. Here, a combination of endothelial cell immortalization and phage display techniques has been used to investigate the role of gp85/trans-sialidase in binding to the vasculature. Methods: Bacteriophage expressing an important peptide motif (denominated FLY) common to all gp85/trans-sialidase proteins was used as a surrogate to investigate the interaction of this motif with the endothelium compartment. For that purpose phage particles were incubated with endothelial cells obtained from different organs or injected into mice intravenously and the number of phage particles bound to cells or tissues was determined. Binding of phages to intermediate filament proteins has also been studied. Findings and Conclusions: Our data indicate that FLY interacts with the endothelium in an organ-dependent manner with significantly higher avidity for the heart vasculature. Phage display results also show that FLY interaction with intermediate filament proteins is not limited to cytokeratin 18 (CK18), which may explain the wide variety of cells infected by the parasite. This is the first time that members of the intermediate filaments in general, constituted by a large group of ubiquitously expressed proteins, have been implicated in T. cruzi cell invasion and tissue homing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid alkalinization factor (RALF) is part of a growing family of small peptides with hormone characteristics in plants. Initially isolated from leaves of tobacco plants, RALF peptides can be found throughout the plant kingdom and they are expressed ubiquitously in plants. We took advantage of the small gene family size of RALF genes in sugarcane and the ordered cellular growth of the grass sugarcane leaves to gain information about the function of RALF peptides in plants. Here we report the isolation of two RALF peptides from leaves of sugarcane plants using the alkalinization assay. SacRALF1 was the most abundant and, when added to culture media, inhibited growth of microcalli derived from cell suspension cultures at concentrations as low as 0.1 mu M. Microcalli exposed to exogenous SacRALF1 for 5 days showed a reduced number of elongated cells. Only four copies of SacRALF genes were found in sugarcane plants. All four SacRALF genes are highly expressed in young and expanding leaves and show a low or undetectable level of expression in expanded leaves. In half-emerged leaf blades, SacRALF transcripts were found at high levels at the basal portion of the leaf and at low levels at the apical portion. Gene expression analyzes localize SacRALF genes in elongation zones of roots and leaves. Mature leaves, which are devoid of expanding cells, do not show considerable expression of SacRALF genes. Our findings are consistent with SacRALF genes playing a role in plant development potentially regulating tissue expansion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The small amounts of antibacterial peptides that can be isolated from insects do not allow detailed studies of their range of activity, side-chain sugar requirements, or their conformation, factors that frequently play roles in the mode of action. In this paper, we report the solid-phase step-by-step synthesis of diptericin, an 82-mer peptide, originally isolated from Phormia terranovae. The unglycosylated peptide was purified to homogeneity by conventional reversed-phase high performance liquid chromatography, and its activity spectrum was compared to that Of synthetic unglycosylated drosocin, which shares strong sequence homology with diptericin's N-terminal domain. Diptericin appeared to have antibacterial activity:for only a limited number of Gram-negative bacteria. Diptericin's submicromolar potency against Escherichia coli strains indicated that, in a manner similar to drosocin, the presence of the carbohydrate side chain is not,necessary to kill bacteria. Neither the N-terminal, drosocin-analog fragment, nor the C-terminal, glycine-rich attacin-analog region was active against any of the bacterial strains studied, regardless of whether the Gal-GalNAc disaccharide units were attached. This suggested that the active site of diptericin fell outside the drosocin or attacin homology domains. In addition, the conformation of diptericin did not seem to play a role in the antibacterial activity, as was demonstrated by the complete lack of ordered structure by two-dimensional nuclear magnetic resonance spectroscopy and circular dichroism. Diptericin completely killed bacteria within I h, considerably faster than drosocin and the attacins; unlike some other, fast-acting antibacterial peptides, diptericin did not lyse normal mammalian cells. Taken together, these data suggest diptericin does not belong to any known class of antibacterial peptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various members of the bZip and bHLH-Zip families of eukaryotic transcription factors, including Jun, Fos, and Myc, have been identified as oncoproteins; mutation or deregulated expression of these proteins leads to certain types of cancer. These proteins can only bind to their cognate DNA enhancer sites following homodimerization, or heterodimerization with another family member, via their leucine zipper domain. Thus, a novel anticancer strategy would be to inhibit dimerization of these proteins, thereby blocking their DNA binding and transactivation functions. In this paper we show that it is possible to rationally design leucine zipper peptides that bind with high affinity to the leucine zipper dimerization domains of c-Jun and c-Fos, thus preventing the formation of functional c-Jun homodimers and c-Jun:c-Fos heterodimers; we refer to such peptides as superzippers (SZs). In vivo, c-Jun:SZ and c-Fos:SZ heterodimers should be nonfunctional as they lack one of the two basic domains that are essential for DNA binding. While the transport of a peptidic agent into cells often poses a severe obstacle to its therapeutic use, we show that a 46-residue leucine zipper peptide can be transported into HeLa cells by coupling it to a 17-residue carrier peptide from the Antennapedia homeodomain, thus paving the way for detailed studies of the therapeutic potential of superzipper peptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extracellular matrix (ECM) of tissues is an assembly of insoluble macromolecules that specifically interact with soluble bioactive molecules and regulate their distribution and availability to cells. Recapitulating this ability has been an important target in controlled growth factor delivery strategies for tissue regeneration and requires the design of multifunctional carriers. This review describes the integration of supramolecular interactions on the design of delivery strategies that encompass self-assembling and engineered affinity components to construct advanced biomimetic carriers for growth factor delivery. Several glycan- and peptide-based self-assemblies reported in the literature are highlighted and commented upon. These examples demonstrate how molecular design and chemistry are successfully employed to create versatile multifunctional molecules which self-assemble/disassemble in a precisely predicted manner, thus controlling compartmentalization, transport and delivery. Finally, we discuss whether recent advances in the design and preparation of supramolecular delivery systems have been sufficient to drive real translation towards a clinical impact. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências (área de especialização em Química)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300 nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant growth is strongly influenced by the presence of neighbors that compete for light resources. In response to vegetational shading shade-intolerant plants such as Arabidopsis display a suite of developmental responses known as the shade-avoidance syndrome (SAS). The phytochrome B (phyB) photoreceptor is the major light sensor to mediate this adaptive response. Control of the SAS occurs in part with phyB, which controls protein abundance of phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) directly. The shade-avoidance response also requires rapid biosynthesis of auxin and its transport to promote elongation growth. The identification of genome-wide PIF5-binding sites during shade avoidance revealed that this bHLH transcription factor regulates the expression of a subset of previously identified SAS genes. Moreover our study suggests that PIF4 and PIF5 regulate elongation growth by controlling directly the expression of genes that code for auxin biosynthesis and auxin signaling components.