999 resultados para Pavement-vehicle interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing global distribution of automobiles necessitates that the design of In-vehicle Information Systems (IVIS) is appropriate for the regions to which they are being exported. Differences between regions such as culture, environment and traffic context can influence the needs, usability and acceptance of IVIS. This paper describes two studies aimed at identifying regional differences in IVIS design needs and preferences across drivers from Australia and China to determine the impact of any differences on IVIS design. Using a questionnaire and interaction clinics, the influence of cultural values and driving patterns on drivers' preferences for, and comprehension of, surface- and interaction-level aspects of IVIS interfaces was explored. Similarities and differences were found between the two regional groups in terms of preferences for IVIS input control types and labels and in the comprehension of IVIS functions. Specifically, Chinese drivers preferred symbols and Chinese characters over English words and were less successful (compared to Australians) at comprehending English abbreviations, particularly for complex IVIS functions. Implications in terms of the current trend to introduce Western-styled interfaces into other regions with little or no adaptation are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

KEEP CLEAR pavement markings are widely used at urban signalised intersections to indicate to drivers to avoid entering blocked intersections. For example, ‘Box junctions’ are most widely used in the United Kingdom and other European countries. However, in Australia, KEEP CLEAR markings are mostly used to improve access from side roads onto a main road, especially when the side road is very close to a signalised intersection. This paper aims to reveal how the KEEP CLEAR markings affect the dynamic performance of the queuing vehicles on the main road, where the side road access is near a signalised intersection. Raw traffic field data was collected from an intersection at the Gold Coast, Australia, and the Kanade–Lucas–Tomasi (KLT) feature tracker approach was used to extract dynamic vehicle data from the raw video footage. The data analysis reveals that the KEEP CLEAR markings generate positive effects on the queuing vehicles in discharge on the main road. This finding refutes the traditional viewpoint that the KEEP CLEAR pavement markings will cause delay for the queuing vehicles’ departure due to the enlarged queue spacing. Further studies are suggested in this paper as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Production of recycled concrete aggregates (RCA) from construction and demolition (C&D) waste has become popular all over the world since the availability of land spaces are limited to dispose. Therefore it is important to seek alternative applications for RCA. The use of RCA in base and sub-base layers in granular pavement is a viable solution. In mechanistic pavement design, rutting (permanent deformation) is considered as the major failure mechanisms of the pavement. The rutting is the accumulation of permanent deformation of pavement layers caused by the repetitive vehicle load. In Queensland, Australia, it is accepted to have the maximum of 20% of reclaimed asphalt pavement (RAP) in RCA and therefore, it is important to investigate the effect of RAP on the permanent deformation properties of RCA. In this study, a series of repeated load triaxial (RLT) tests were conducted on RCA blended with different percentage of RAP to investigate the permanent deformation and resilient modulus properties of RCA. The vertical deformation and resilient modulus values were used to determine the response of RCA for the cyclic loading under standard pressure and loading conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conflicts in Iraq and Afghanistan have been epitomized by the insurgents’ use of the improvised explosive device against vehicle-borne security forces. These weapons, capable of causing multiple severely injured casualties in a single incident, pose the most prevalent single threat to Coalition troops operating in the region. Improvements in personal protection and medical care have resulted in increasing numbers of casualties surviving with complex lower limb injuries, often leading to long-term disability. Thus, there exists an urgent requirement to investigate and mitigate against the mechanism of extremity injury caused by these devices. This will necessitate an ontological approach, linking molecular, cellular and tissue interaction to physiological dysfunction. This can only be achieved via a collaborative approach between clinicians, natural scientists and engineers, combining physical and numerical modelling tools with clinical data from the battlefield. In this article, we compile existing knowledge on the effects of explosions on skeletal injury, review and critique relevant experimental and computational research related to lower limb injury and damage and propose research foci required to drive the development of future mitigation technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggressive behavior at the steering wheel has been indicated as a contributing factor in a majority of crashes and anger has been compared to alcohol impairment in terms of probability to cause a crash. It has been shown that being in a state of anger or excitement while driving can decrease the drivers’ performances. . This paper reports the evaluation of 6 novel design alternatives of In-Vehicle Information Systems (IVIS) aimed at mitigating driver aggression. Each application presented was designed to tackle the following contributing factors to driver aggression: competitiveness, anonymity, territoriality, stress as well as social and emotional isolation. The 6 applications were simulated using computer vision algorithm to automatically overlay the real traffic conditions with ‘Head-Up Display’ visualizations. Two applications emerged over the others from participant’s evaluation: shared music combined the known calming effect of music with the sense of sympathy and intimacy caused by hearing other drivers’ music. The Shared Snapshot application provided an immediate gratification and was evaluated as a potential prevention of roadside quarrels. The paper presents Theoretical foundation, participant’s evaluations, implications and limitations of the study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A significant proportion of worker fatalities within Australia result from truck-related incidents. Truck drivers face a number of health and safety concerns. Safety culture, viewed here as the beliefs, attitudes and values shared by an organisation’s workers, which interact with their surrounding context to influence behaviour, may provide a valuable lens for exploring safety-related behaviours in heavy vehicle operations. To date no major research has examined safety culture within heavy vehicle industries. As safety culture provides a means to interpret experiences and generate behaviour, safety culture research should be conducted with an awareness of the context surrounding safety. The current research sought to examine previous health and safety research regarding heavy vehicle operations to profile contextual factors which influence health and safety. A review of 104 peer-reviewed papers was conducted. Findings of these papers were then thematically analysed. A number of behaviours and scenarios linked with crashes and non-crash injuries were identified, along with a selection of health outcomes. Contextual factors which were found to influence these outcomes were explored. These factors were found to originate from government departments, transport organisations, customers and the road and work environment. The identified factors may provide points of interaction, whereby culture may influence health and safety outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating noncritical in-car systems. Under such conditions, however, speech recognition accuracy degrades significantly, and techniques such as speech enhancement are required to improve these accuracies. Likelihood-maximizing (LIMA) frameworks optimize speech enhancement algorithms based on recognized state sequences rather than traditional signal-level criteria such as maximizing signal-to-noise ratio. LIMA frameworks typically require calibration utterances to generate optimized enhancement parameters that are used for all subsequent utterances. Under such a scheme, suboptimal recognition performance occurs in noise conditions that are significantly different from that present during the calibration session – a serious problem in rapidly changing noise environments out on the open road. In this chapter, we propose a dialog-based design that allows regular optimization iterations in order to track the ever-changing noise conditions. Experiments using Mel-filterbank noise subtraction (MFNS) are performed to determine the optimization requirements for vehicular environments and show that minimal optimization is required to improve speech recognition, avoid over-optimization, and ultimately assist with semireal-time operation. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate modelling of automotive occupant posture is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The thigh-buttock surface shell model was based on 95th percentile male subject scan data and made of two layers, covering thin to moderate thigh and buttock proportions. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour. The analytical seat model is based on a Ford production seat. The result of the finite-element indentation simulation is compared to a previous simulation of an indentation with a hard shell human model of equal geometry, and to the physical indentation result. We conclude that SAE composite buttock form and human-seat indentation of a suspended seat cushion can be validly simulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The implementation of pavement management seems to ignore road safety, with its focus being mainly on infrastructure condition. Safety management as part of pavement management should consider various means of reducing the frequency of vehicle crashes by allocating corrective measures to mitigate accident exposure, as well as reduce accident severity and likelihood. However, it is common that lack of accident records and crash contributing factors impedes incorporating safety into pavement management. This paper presents a case study for the initial development of pavement management systems considering data limitations for 3000 km of Tanzania’s national roads. A performance based optimization utilizes indices for safety and surface condition to allocate corrective measures. A modified Pareto analysis capable of accounting for annual performance and of balancing resources to achieve good surface condition and low levels of safety was applied. Tradeoff analysis for the case study found the need to assign 30% relevance to condition and 70% to road safety. Safety and condition deficiencies were corrected within 5 years with the majority of improvements dedicated to surface treatments and some geometric corrections. Large investments for correcting geometric issues were observed in years two and three if more money was made available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autonomous mission control, unlike automatic mission control which is generally pre-programmed to execute an intended mission, is guided by the philosophy of carrying out a complete mission on its own through online sensing, information processing, and control reconfiguration. A crucial cornerstone of this philosophy is the capability of intelligence and of information sharing between unmanned aerial vehicles (UAVs) or with a central controller through secured communication links. Though several mission control algorithms, for single and multiple UAVs, have been discussed in the literature, they lack a clear definition of the various autonomous mission control levels. In the conventional system, the ground pilot issues the flight and mission control command to a UAV through a command data link and the UAV transmits intelligence information, back to the ground pilot through a communication link. Thus, the success of the mission depends entirely on the information flow through a secured communication link between ground pilot and the UAV In the past, mission success depended on the continuous interaction of ground pilot with a single UAV, while present day applications are attempting to define mission success through efficient interaction of ground pilot with multiple UAVs. However, the current trend in UAV applications is expected to lead to a futuristic scenario where mission success would depend only on interaction among UAV groups with no interaction with any ground entity. However, to reach this capability level, it is necessary to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. This article presents a detailed framework of UAV autonomous mission control levels in the context of information flow and communication between UAVs and UAV groups for each level of autonomy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of identification of parameters of a beam-moving oscillator system based on measurement of time histories of beam strains and displacements is considered. The governing equations of motion here have time varying coefficients. The parameters to be identified are however time invariant and consist of mass, stiffness and damping characteristics of the beam and oscillator subsystems. A strategy based on dynamic state estimation method, that employs particle filtering algorithms, is proposed to tackle the identification problem. The method can take into account measurement noise, guideway unevenness, spatially incomplete measurements, finite element models for supporting structure and moving vehicle, and imperfections in the formulation of the mathematical models. Numerical illustrations based on synthetic data on beam-oscillator system are presented to demonstrate the satisfactory performance of the proposed procedure.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nesta dissertação são avaliados os efeitos dinâmicos provenientes da travessia de comboios de veículos sobre o tabuleiro irregular de obras de arte rodoviárias de concreto armado. O modelo matemático empregado para simular o comportamento do sistema veículo-ponte considera a participação da massa e da rigidez das viaturas na definição das freqüências do sistema e, conseqüentemente, a força de interação entre os veículos e a ponte é afetada pela flexibilidade desta. A ponte é modelada a partir do emprego de elementos finitos de barra unidimensionais e discretizado com massas concentradas e flexibilidade distribuída. O modelo de veículo empregado baseia-se no veículo TB-12 preconizado pela norma brasileira NBR 7188. Este veículo é simulado por sistemas de massas, molas e amortecedores sendo descrito por graus de liberdade à translação e rotação no plano. As irregularidades da pista são definidas por um modelo não-determinístico com base na densidade espectral do pavimento. O carregamento sobre a ponte é constituído por sucessões de veículos deslocando-se com velocidade constante sobre a obra. Devido à própria natureza das irregularidades da pista e do comboio de veículos, atenção especial é concentrada na fase permanente da resposta do sistema. São estudadas as respostas de dois modelos estruturais existentes, com base em tabuleiros isostáticos, em concreto armado, com e sem balanços, em seção do tipo T e duplo T, respectivamente, em termos de deslocamentos e esforços nas seções onde ocorrem os efeitos máximos. As conclusões do trabalho versam sobre a influência da velocidade, espaçamento e do número de veículos, referentes a situações distintas de carregamento, no que tange a resposta dinâmica das pontes rodoviárias de concreto armado. A magnitude dos efeitos dinâmicos associados à interação dos veículos com o pavimento irregular também é investigada.