964 resultados para Patellofemoral pain syndrome
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Fisioterapia - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Stair climbing is a functional activity often cited as main complaint by patients with orthopedic – as patellofemoral pain syndrome – or neurologic alterations. Moreover, the stair climbing is usually used as therapeutic resource. However, few studies have been conducted to characterize the movement during the ascent or descent of stairs and these studies concluded that the high variability of the data could not confirm the results [Yu, 1997] . In this way, this study aimed to verify which parameters show less variation and so, are more appropriate to characterize the stair climbing.
Resumo:
The aim of the present study was to evaluate the use MRI to quantify the workload of gluteus medius (GM), vastus medialis (VM) and vastus lateralis (VL) muscles in different types of squat exercises. Fourteen female volunteers were evaluated, average age of 22 +/- 2 years, sedentary, without clinical symptoms, and without history of previous lower limb injuries. Quantitative MRI was used to analyze VM, VL and GM muscles before and after squat exercise, squat associated with isometric hip adduction and squat associated with isometric hip abduction. Multi echo images were acquired to calculate the transversal relaxation times (T2) before and after exercise. Mixed Effects Model statistical analysis was used to compare images before and after the exercise (Delta T2) to normalize the variability between subjects. Imaging post processing was performed in Matlab software. GM muscle was the least active during the squat associated with isometric hip adduction and VM the least active during the squat associated with isometric hip abduction, while VL was the most active during squat associated with isometric hip adduction. Our data suggests that isometric hip adduction during the squat does not increase the workload of VM, but decreases the GM muscle workload. Squat associated with isometric hip abduction does not increase VL workload.
Resumo:
BALDON, R. D. M., D. F. M. LOBATO, L. P. CARVALHO, P. Y. L. WUN, P. R. P. SANTIAGO, and F. V. SERRAO. Effect of Functional Stabilization Training on Lower Limb Biomechanics in Women. Med. Sci. Sports Exerc., Vol. 44, No. 1, pp. 135-145, 2012. Purpose: This study aimed to verify the effects of functional stabilization training on lower limb kinematics, functional performance, and eccentric hip and knee torques. Methods: Twenty-eight women were divided into a training group (TG; n = 14), which carried out the functional stabilization training during 8 wk, and a control group (CG; n = 14), which carried out no physical training. The kinematic assessment of the lower limb was performed during a single-leg squat, and the functional performance was evaluated by way of the single-leg triple hop and the timed 6-m single-leg hop tests. The eccentric hip abductor, adductor, lateral rotator, medial rotator, and the knee flexor and extensor torques were measured using an isokinetic dynamometer. Results: After 8 wk, the TG significantly reduced the values for knee abduction (from -6.86 degrees to 1.49 degrees), pelvis depression (from -10.21 degrees to -7.86 degrees) and femur adduction (from 7.08 degrees to 5.19 degrees) as well as increasing the excursion of femur lateral rotation (from -0.55 degrees to -3.67 degrees). Similarly, the TG significantly increased the values of single-leg triple hop (from 3.52 to 3.92 m) and significantly decreased the values of timed 6-m single-leg hop tests (from 2.43 to 2.14 s). Finally, the TG significantly increased the eccentric hip abductor (from 1.31 to 1.45 N center dot m center dot kg(-1)), hip lateral rotator (from 0.75 to 0.91 N center dot m center dot kg(-1)), hip medial rotator (from 1.45 to 1.66 N center dot m center dot kg(-1)), knee flexor (from 1.43 to 1.55 N center dot m center dot kg(-1)), and knee extensor (from 3.46 to 4.40 N center dot m center dot kg(-1)) torques. Conclusions: Strengthening of the hip abductor and lateral rotator muscles associated with functional training improves dynamic lower limb alignment and increases the strength and functional performance.
Resumo:
Orthotic therapy is frequently advocated for the treatment Of musculoskeletal pain and injury of the lower limb. The clinical efficacy, mechanical effects, and Underlying mechanism of the action of foot orthotics has not been Conclusively determined making it difficult for practitioners to agree on a reliable and valid clinical approach to their application and indeed even their fabrication. This problem is compounded by evidence suggesting that the most commonly used approach for orthotic prescription, the (Biomechanical Evaluation of the Foot. Vol. 1. Clinical Biomechanics Corporation, Los Angeles, 1971) approach, has poor validity and many of the associated clinical measurements of that approach lack adequate levels of reliability. This paper proposes a new approach that is based on two key elements. One is the identification, verification and quantification of physical tasks that serve as client specific outcome measures. The second is the application of specific physical manipulations during the performance of these physical tasks. The physical manipulations are selected on the basis of motion dysfunction and their immediate effects on the client specific outcome measures serve as the basis to making an informed decision on the propriety of using orthotics in individual clients. The motion dysfunction also guides the type of orthotic that is applied. Practical case examples as well Lis generic and specific guidelines to the application of this clinical assessment process and orthotics are provided in this paper. (C) 2004 Published by Elsevier Ltd.
Resumo:
Objective: Accurate neuromuscular control of the patellofemoral joint is important in knee joint mechanics. Strategies to coordinate the vasti muscles, such as motor unit synchronization, may simplify control of patellar tracking. This study investigated motor unit synchronization between vastus medialis (VM) and lateralis (VL). Methods: Electromyographic (EMG) recordings of single motor unit action potentials (MUAPs) were made from VM and single- and multi-unit recordings were made from VL. Synchronization was quantified from peaks in the cross-correlogram generated from single MUAP pairs in VL and VM. The proportion of motor units in VM with synchronized firing in VL was also quantified from peaks in averages of multiunit VL EMG triggered from the VM MUAP. Results: A high degree of synchronization of motor unit firing between VM and VL was identified. Results were similar for cross-correlation (similar to 45% of cases) and triggered averages (similar to 41% of cases). Conclusions: The data suggest that synchronization between VM and VL is higher than expected. Agreement between traditional cross-correlation and triggered averaging methods suggest that this new technique may provide a more clinically viable method to quantify synchronization. Significance: High synchronization between VM and VL may provide a solution to simplify control of the mechanically unstable patellofemoral joint. (c) 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Activity of the vasti has been argued to vary through knee range of movement due to changes in passive support of the patellofemoral joint and the relative contribution of these muscles to knee extension. Efficient function of the knee is dependent on optimal control of the patellofemoral joint, largely through coordinated activity of the medial and lateral quadriceps. Motor unit synchronization may provide a mechanism to coordinate the activity of vastus medialis (VMO) and vastus lateralis (VL), and may be more critical in positions of reduced passive support for the patellofemoral joint (i.e., full extension). Therefore, the aim of this study was to determine whether the degree of motor unit synchronization between the vasti muscles is dependent on joint angle. Electromyographic (EMG) recordings of single motor unit action potentials (MUAPs) were made from VMO and multiunit recordings from VL during isometric contractions of the quadriceps at 0 degrees, 30 degrees, and 60 degrees of knee flexion. The degree of synchronization between motor unit firing was evaluated by identification of peaks in the rectified EMG averages of VL, triggered from MUA-Ps in VMO. The proportion of cases in which there was a significant peak in the triggered averages was calculated. There was no significant difference in the degree of synchronization between the vasti at different knee angles (p = 0.57). These data suggest that this basic coordinative mechanism between the vasti muscles is controlled consistently throughout knee range of motion, and is not augmented at specific angles where the requirement for dynamic control of stability is increased. (D 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Resumo:
FEHR, Guilherme Lotierso et al. Efetividade dos exercícios em cadeia cinética aberta e cadeia cinética fechada no tratamento da síndrome da dor femoropatelar. Revista Brasileira de Medicina do Esporte, [s.l], v. 12, n. 2, p.66-70, mar./abr. 2006. Bimestral. Disponível em:
Resumo:
FEHR, Guilherme Lotierso et al. Efetividade dos exercícios em cadeia cinética aberta e cadeia cinética fechada no tratamento da síndrome da dor femoropatelar. Revista Brasileira de Medicina do Esporte, [s.l], v. 12, n. 2, p.66-70, mar./abr. 2006. Bimestral. Disponível em:
Resumo:
Dynamic knee valgus is a multi-planar motion that has been associated with anterior cruciate ligament injuries and patellofemoral pain syndrome. Clinical assessment of dynamic knee valgus can be made by looking for the visual appearance of excessive medial knee displacement (MKD) in the double-leg squat (DLS). The purpose of this dissertation was to identify the movement patterns and neuromuscular strategies associated with MKD during the DLS. Twenty-four control subjects and eight individuals showing MKD during the DLS participated in the study. Significant differences were verified between subjects that demonstrated MKD and a control (CON) group for the eletromyographic amplitude of adductor magnus, biceps femoris, vastus lateralis and vastus medialis muscles (p < 0.05), during the descending phase of the DLS. During the ascending phase were found group differences for adductor magnus and rectus femoris muscles (p < 0.05). Results from kinematic analysis revealed higher minimum and maximum values of ankle abduction and knee internal rotation angles (p < 0.05) for the MKD group. Also, individuals showing excessive MKD had higher hip adduction/abduction excursion. Our results suggested that higher tibial internal rotation and knee internal rotation angles in the initial position of the DLS are associated with MKD. The neuromuscular strategies that contributed to MKD were higher adductor magnus activation, whereas biceps femoris, vastus lateralis and vastus medialis activated more to stabilize the knee in response to the internal rotation moment.
Resumo:
Acute pain has substantial survival value because of its protective function in the everyday environment. Instead, chronic pain lacks survival and adaptive function, causes great amount of individual suffering, and consumes the resources of the society due to the treatment costs and loss of production. The treatment of chronic pain has remained challenging because of inadequate understanding of mechanisms working at different levels of the nervous system in the development, modulation, and maintenance of chronic pain. Especially in unclear chronic pain conditions the treatment may be suboptimal because it can not be targeted to the underlying mechanisms. Noninvasive neuroimaging techniques have greatly contributed to our understanding of brain activity associated with pain in healthy individuals. Many previous studies, focusing on brain activations to acute experimental pain in healthy individuals, have consistently demonstrated a widely-distributed network of brain regions that participate in the processing of acute pain. The aim of the present thesis was to employ non-invasive brain imaging to better understand the brain mechanisms in patients suffering from chronic pain. In Study I, we used magnetoencephalography (MEG) to measure cortical responses to painful laser stimulation in healthy individuals for optimization of the stimulus parameters for patient studies. In Studies II and III, we monitored with MEG the cortical processing of touch and acute pain in patients with complex regional pain syndrome (CRPS). We found persisting plastic changes in the hand representation area of the primary somatosensory (SI) cortex, suggesting that chronic pain causes cortical reorganization. Responses in the posterior parietal cortex to both tactile and painful laser stimulation were attenuated, which could be associated with neglect-like symptoms of the patients. The primary motor cortex reactivity to acute pain was reduced in patients who had stronger spontaneous pain and weaker grip strength in the painful hand. The tight coupling between spontaneous pain and motor dysfunction supports the idea that motor rehabilitation is important in CRPS. In Studies IV and V we used MEG and functional magnetic resonance imaging (fMRI) to investigate the central processing of touch and acute pain in patients who suffered from recurrent herpes simplex virus infections and from chronic widespread pain in one side of the body. With MEG, we found plastic changes in the SI cortex, suggesting that many different types of chronic pain may be associated with similar cortical reorganization. With fMRI, we found functional and morphological changes in the central pain circuitry, as an indication of central contribution for the pain. These results show that chronic pain is associated with morphological and functional changes in the brain, and that such changes can be measured with functional imaging.