918 resultados para Pasture and forests
Resumo:
Climate change and variability in sub-Saharan West Africa is expected to have negative consequences for crop and livestock farming due to the strong dependence of these sectors on rainfall and natural resources, and the low adaptive capacity of crops farmers, agro-pastoralist and pastoralists in the region. The objective of this PhD research was to investigate the anticipated impacts of expected future climate change and variability on nutrition and grazing management of livestock in the prevailing extensive agro-pastoral and pastoral systems of the Sahelian and Sudanian zones of Burkina Faso. To achieve this, three studies were undertaken in selected village territories (100 km² each) in the southern Sahelian (Taffogo), northern Sudanian (Nobere, Safane) and southern Sudanian (Sokouraba) zone of the country during 2009 and 2010. The choice of two villages in the northern Sudanian zone was guided by the dichotomy between intense agricultural land use and high population density near Safane, and lower agricultural land use in the tampon zone between the village of Nobere and the National Park Kaboré Tambi of Pô. Using global positioning and geographical information systems tools, the spatio-temporal variation in the use of grazing areas by cattle, sheep and goats, and in their foraging behaviour in the four villages was assessed by monitoring three herds each per species during a one-year cycle (Chapter 2). Maximum itinerary lengths (km/d) were observed in the hot dry season (March-May); they were longer for sheep (18.8) and cattle (17.4) than for goats (10.5, p<0.05). Daily total grazing time spent on pasture ranged from 6 - 11 h with cattle staying longer on pasture than small ruminants (p<0.05). Feeding time accounted for 52% - 72% of daily time on pasture, irrespective of species. Herds spent longer time on pasture and walked farther distances in the southern Sahelian than the two Sudanian zones (p<0.01), while daily feeding time was longer in the southern Sudanian than in the other two zones (p>0.05). Proportional time spent resting decreased from the rainy (June - October) to the cool (November - February) and hot dry season (p<0.05), while in parallel the proportion of walking time increased. Feeding time of all species was to a significantly high proportion spent on wooded land (tree crown cover 5-10%, or shrub cover >10%) in the southern Sahelian zone, and on forest land (tree crown cover >10%) in the two Sudanian zones, irrespective of season. It is concluded that with the expansion of cropland in the whole region, remaining islands of wooded land, including also fields fallowed for three or more years with their considerable shrub cover, are particularly valuable pasturing areas for ruminant stock. Measures must be taken that counteract the shrinking of wooded land and forests across the whole region, including also active protection and (re)establishment of drought-tolerant fodder trees. Observation of the selection behaviour of the above herds of cattle and small ruminant as far as browse species were concerned, and interviews with 75 of Fulani livestock keepers on use of browse as feed by their ruminant stock and as remedies for animal disease treatment was undertaken (Chapter 3) in order to evaluate the consequence of climate change for the contribution of browse to livestock nutrition and animal health in the extensive grazing-based livestock systems. The results indicated that grazing cattle and small ruminants do make considerable use of browse species on pasture across the studied agro-ecological zones. Goats spent more time (p<0.01) feeding on browse species than sheep and cattle, which spent a low to moderate proportion of their feeding time on browsing in any of the study sites. As far as the agro-ecological zones were concerned, the contribution of browse species to livestock nutrition was more important in the southern Sahelian and northern Sudanian zone than the southern Sudanian zone, and this contribution is higher during the cold and hot dry season than during the rainy season. A total of 75 browse species were selected on pasture year around, whereby cattle strongly preferred Afzelia africana, Pterocarpus erinaceus and Piliostigma sp., while sheep and goats primarily fed on Balanites aegyptiaca, Ziziphus mauritiana and Acacia sp. Crude protein concentration (in DM) of pods or fruits of the most important browse species selected by goats, sheep and cattle ranged from 7% to 13% for pods, and from 10% to 18% for foliage. The concentration of digestible organic matter of preferred browse species mostly ranged from 40% to 60%, and the concentrations of total phenols, condensed tannins and acid detergent lignin were low. Linear regression analyses showed that browse preference on pasture is strongly related to its contents (% of DM) of CP, ADF, NDF and OM digestibility. Interviewed livestock keepers reported that browse species are increasingly use by their grazing animals, while for animal health care use of tree- and shrub-based remedies decreased over the last two decades. It is concluded that due to climate change with expected negative impact on the productivity of the herbaceous layer of communal pastures browse fodder will gain in importance for animal nutrition. Therefore re-establishment and dissemination of locally adapted browse species preferred by ruminants is needed to increase the nutritional situation of ruminant stock in the region and contribute to species diversity and soil fertility restoration in degraded pasture areas. In Chapter 4 a combination of household surveys and participatory research approaches was used in the four villages, and additionally in the village of Zogoré (southern Sahelian zone) and of Karangasso Vigué (northern Sudanian zone) to investigate pastoralists’ (n= 76) and agro-pastoralists’ (n= 83) perception of climate change, and their adaptation strategies in crop and livestock production at farm level. Across the three agro-ecological zones, the majority of the interviewees perceived an increase in maximum day temperatures and decrease of total annual rainfall over the last two decades. Perceptions of change in climate patterns were in line with meteorological data for increased temperatures while for total rainfall farmers’ views contrasted the rainfall records which showed a slight increase of precipitation. According to all interviewees climate change and variability have negative impacts on their crop and animal husbandry, and most of them already adopted some coping and adaptation strategies at farm level to secure their livelihoods and reduce negative impacts on their farming system. Although these strategies are valuable and can help crop and livestock farmers to cope with the recurrent droughts and climate variability, they are not effective against expected extreme climate events. Governmental and non-governmental organisations should develop effective policies and strategies at local, regional and national level to support farmers in their endeavours to cope with climate change phenomena; measures should be site-specific and take into account farmers’ experiences and strategies already in place.
Resumo:
The growth of mining activities in Africa in the last decade has coincided with increased attention on the fate of the continent’s forests, specifically in the contexts of livelihoods and climate change. Although mining has serious environmental impacts, scant attention has been paid to the processes which shape decision-making in contexts where minerals and forests overlap. Focussing on the illustrative case of Ghana, this paper articulates the dynamics of power, authority and legitimacy of private companies, traditional authorities and key state institutions in governing mining activities in forests. The analysis highlights how mining companies and donors promote a neoliberal model of resource management which entrenches their ability to benefit from mineral exploitation and marginalises the role of state institutions and traditional authorities in decision-making. This subsequently erodes state authority and legitimacy and compounds the contested nature of traditional authorities’ legitimacy. A more nuanced examination of foundational governance questions concerning the relative role of the state, traditional authorities and private interests is needed.
Resumo:
In this study alpha and beta diversity patterns of five leaf litter arthropod groups (ants, predatory ants, oribatid mites, spiders and other arachnids) were described and compared in 39 sampling patches of a transformed landscape in southwestern Colombia, that represented five vegetation types: secondary forest, riparian forest, giant bamboo forest, pasture and sugarcane crop. It was also assessed whether some taxa could be used as diversity surrogates. A total of 6,765 individuals grouped in 290 morphospecies were collected. Species richness in all groups was lower in highly transformed vegetation types (pasture, sugarcane crop) than in native ones (forests). In contrast, there were no clear tendencies of beta diversity among vegetation types. Considering sampling patches, 0.1-42% of the variation in alpha diversity of one taxonomic group could be explained from the alpha diversity of another, and 0.2-33% of the variation of beta diversity of a given taxon was explained by that in other groups. Contrary to recent findings, we concluded that patterns of alpha diversity are more congruent than patterns of beta diversity. This fact could be attributed to a sampling effect that promotes congruence in alpha diversity and to a lack of a clear regional ecological gradient that could promote congruent patterns of beta diversity. We did not find evidence for an ideal diversity surrogate although diversity patterns of predatory ants had the greatest congruencies. These results support earlier multi-taxon evaluations in that conservation planning should not be based on only one leaf litter arthropod group.
Resumo:
Three teams consisting of 2 to 5 persons each play the game. Each team represents a farm. Each team decides jointly on its strategy. In annual meetings in winter, the farm teams jointly discuss, evaluate and decide on how to proceed and actions to be taken. The farms make use of three different pasture areas (village pasture, intensive pasture and summer pasture) for grazing their livestock. The carrying capacity of each pasture area is different and varies according to the season. In each season, the farms have to decide on how many livestock units to graze on which pasture. Overgrazing and pasture degradation occur if the total number of livestock units exceeds the carrying capacity of a specific pasture area. Overgrazing results in a reduction of pasture productivity. To diversify and improve their livelihood strategy farms can make individual investments to increase productivity at the farm level, eg. in fodder production or in income generating activities. At the community level, collective investments can be made which may influence livestock and household economy, e.g. rehabilitate and improve pasture productivity, improve living conditions on remote pastures etc. Events occurring in the course of the game represent different types of (risk) factors such as meteorology, market, politics etc. that may positively or negatively influence livestock production and household economy. A sustainable management of pastures requires that farms actively regulate the development of their herds, that they take measures to prevent pasture degradation and to improve pasture productivity, and that they find a balance between livestock economy and other productive activities. The game has a double aim: a) each farm aims at its economic success and prosperity, and b) the three farm teams jointly have to find and implement strategies for a sustainable use of pasture areas.
Resumo:
The first issue of this report appeared in 1896, with title: Report on the forests of Western Australia. "A large portion of the original matter has ... been fairly well retained, but this has been considerably added to ... so as to make the report an up-to-date compendium upon the forests of Western Austalia." - Cf. Pref.
Resumo:
Distributed to some depository libraries in microfiche.
Resumo:
Rhizoctonia solani AG-2-2 was isolated from wilting and dying plants of sulla ( Hedysarum coronarium), which is currently being assessed in eastern and southern Australia for its potential as a pasture and forage legume. Infected plants in the field had extensive rotting of the taproot, lateral roots and crown. Koch's postulates were fulfilled using three inoculation methods. The disease may pose a considerable threat to the potential use of H. coronarium in the dryland, grazing farming systems of Australia, with resistance offering the most viable option for minimising its impact.
Resumo:
There is increasing interest in the use of continuous housing systems for dairy cows, with various reasons put forward to advocate such systems. However, the welfare of dairy cows is typically perceived to be better within pasture-based systems, although such judgements are often not scientifically based. The aim of this review was to interrogate the existing scientific literature to compare the welfare, including health, of dairy cows in continuously housed and pasture-based systems. While summarising existing work, knowledge gaps and directions for future research are also identified. The scope of the review is broad, examining relevant topics under three main headings; health, behaviour, and physiology. Regarding health, cows on pasture-based systems had lower levels of lameness, hoof pathologies, hock lesions, mastitis, uterine disease, and mortality compared to cows on continuously housed systems. Pasture access also had benefits for dairy cow behaviour, in terms of grazing, improved lying / resting times, and lower levels of aggression. Moreover, when given the choice between pasture and indoor housing, cows showed an overall preference for pasture, particularly at night. However, the review highlighted the need for a deeper understanding of cow preference and behaviour. Potential areas for concern within pasture-based systems included physiological indicators of more severe negative energy balance, and in some situations, the potential for compromised welfare with exposure to unpredictable weather conditions. In summary, the results from this review highlight that there remain considerable animal welfare benefits from incorporating pasture access into dairy production systems.
Resumo:
Land use change from native forests to pastures in the tropics have impact on global carbon (C) cycle through increased rates of C emissions to the atmosphere and the loss of above- and belowground C accumulation and storage capacity (SILVER et al., 2000). This study was conducted to determine the carbon stock in a Ultisol under a pure Brachiaria humidicola (Rendle) Scheick pasture and a mixed pasture of B. humidicola and Arachis pintoi Krapov. & W. C. Greg cv. BRS Mandobi, both without fertilization.
Modeling nitrous oxide emissions in grass and grass-legume pastures in the western Brazilian Amazon.
Resumo:
Mineral nitrogen (N) dynamics in soil and the exchange of N gaseous in the interface soil-atmosphere are intimately associated with animal manure in pastures. According to soil inorganic-N pools and the site studied, forest or pasture, and pastures age the soil inorganic-N pools of ammonium and nitrate can be similar in the forest or ammonium dominated in the pasture. Also annual average net nitrification rates at soil surface in forest can be higher than in pasture suggesting a higher potential for nitrate-N losses either through leaching or gaseous emissions from intact forests compared with established pastures (NEILL et al., 1995).
Resumo:
Increases in atmospheric concentrations of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) due to human activities have been linked to climate change. GHG emissions from land use change and agriculture have been identified as significant contributors to both Australia’s and the global GHG budget. This is expected to increase over the coming decades as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on CO2, CH4 and N2O trace gas fluxes from subtropical or tropical soils and land uses. To develop effective mitigation strategies a full global warming potential (GWP) accounting methodology is required that includes emissions of the three primary greenhouse gases. Mitigation strategies that focus on one gas only can inadvertently increase emissions of another. For this reason, detailed inventories of GHGs from soils and vegetation under individual land uses are urgently required for subtropical Australia. This study aimed to quantify GHG emissions over two consecutive years from three major land uses; a well-established, unfertilized subtropical grass-legume pasture, a 30 year (lychee) orchard and a remnant subtropical Gallery rainforest, all located near Mooloolah, Queensland. GHG fluxes were measured using a combination of high resolution automated sampling, coarser spatial manual sampling and laboratory incubations. Comparison between the land uses revealed that land use change can have a substantial impact on the GWP on a landscape long after the deforestation event. The conversion of rainforest to agricultural land resulted in as much as a 17 fold increase in GWP, from 251 kg CO2 eq. ha-1 yr-1 in the rainforest to 889 kg CO2 eq. ha-1 yr-1 in the pasture to 2538 kg CO2 eq. ha-1 yr-1 in the lychee plantation. This increase resulted from altered N cycling and a reduction in the aerobic capacity of the soil in the pasture and lychee systems, enhancing denitrification and nitrification events, and reducing atmospheric CH4 uptake in the soil. High infiltration, drainage and subsequent soil aeration under the rainforest limited N2O loss, as well as promoting CH4 uptake of 11.2 g CH4-C ha-1 day-1. This was among the highest reported for rainforest systems, indicating that aerated subtropical rainforests can act as substantial sink of CH4. Interannual climatic variation resulted in significantly higher N2O emission from the pasture during 2008 (5.7 g N2O-N ha day) compared to 2007 (3.9 g N2O-N ha day), despite receiving nearly 500 mm less rainfall. Nitrous oxide emissions from the pasture were highest during the summer months and were highly episodic, related more to the magnitude and distribution of rain events rather than soil moisture alone. Mean N2O emissions from the lychee plantation increased from an average of 4.0 g N2O-N ha-1 day-1, to 19.8 g N2O-N ha-1 day-1 following a split application of N fertilizer (560 kg N ha-1, equivalent to 1 kg N tree-1). The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (emission factor (EF): 1.79%) compared to autumn (EF: 0.91%). This was attributed to the hot and moist climatic conditions and a reduction in plant N uptake during the spring creating conditions conducive to N2O loss. These findings demonstrate that land use change in subtropical Australia can be a significant source of GHGs. Moreover, the study shows that modifying the timing of fertilizer application can be an efficient way of reducing GHG emissions from subtropical horticulture.
Resumo:
Our Counselling and ISS team organised, in early December, 2011 a celebration of two years of art workshops and activities provided for our University post-graduate research students. The workshops had a number of benefits. They were to raise awareness of biodiversity and forests as well as providing a forum for engaging with others and an opportunity to belong to a semi-regular group. The 2010 theme had been the United Nations International Year of Biodiversity and the 2011 theme had been the United Nations International Year of Forests.
Resumo:
Our Counselling and ISS team organised, in early December, 2011 a celebration of two years of art workshops and activities provided for our University post-graduate research students. The workshops had a number of benefits. They were to raise awareness of biodiversity and forests as well as providing a forum for engaging with others and an opportunity to belong to a semi-regular group. The 2010 theme had been the United Nations International Year of Biodiversity and the 2011 theme had been the United Nations International Year of Forests.
Resumo:
Climate change presents a range of challenges for animal agriculture in Australia. Livestock production will be affected by changes in temperature and water availability through impacts on pasture and forage crop quantity and quality, feed-grain production and price, and disease and pest distributions. This paper provides an overview of these impacts and the broader effects on landscape functionality, with a focus on recent research on effects of increasing temperature, changing rainfall patterns, and increased climate variability on animal health, growth, and reproduction, including through heat stress, and potential adaptation strategies. The rate of adoption of adaptation strategies by livestock producers will depend on perceptions of the uncertainty in projected climate and regional-scale impacts and associated risk. However, management changes adopted by farmers in parts of Australia during recent extended drought and associated heatwaves, trends consistent with long-term predicted climate patterns, provide some insights into the capacity for practical adaptation strategies. Animal production systems will also be significantly affected by climate change policy and national targets to address greenhouse gas emissions, since livestock are estimated to contribute ~10% of Australia’s total emissions and 8–11% of global emissions, with additional farm emissions associated with activities such as feed production. More than two-thirds of emissions are attributed to ruminant animals. This paper discusses the challenges and opportunities facing livestock industries in Australia in adapting to and mitigating climate change. It examines the research needed to better define practical options to reduce the emissions intensity of livestock products, enhance adaptation opportunities, and support the continued contribution of animal agriculture to Australia’s economy, environment, and regional communities.