945 resultados para Passive heating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unsteady natural convection due to differentially heating of the sinusoidal corrugated side walls of a modified square enclosure has been numerically investigated. The fluid inside the enclosure is air, initially as quiescent. The flat top and bottom surfaces are considered as adiabatic. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. The results are obtained for the Rayleigh number, Ra ranging from 1e+05 to 1e+08 for different corrugation amplitude and frequency with constant physical properties for the fluid medium considered. The streamlines, isotherms and average Nusselt numbers are presented to observe the effect of sudden heating and its consequent transient behavior on fluid flow and heat transfer characteristics for the range of governing parameters. The present results show that the transient phenomena are greatly influenced by the variation of the aforementioned parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scaling analysis for the natural convection boundary layer adjacent to an inclined semi-infinite plate subject to a non-instantaneous heating in the form of an imposed wall temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the boundary layer flow from start-up to a steady-state has been described based on scaling analyses and verified by numerical simulations. The analysis reveals that, if the period of temperature growth on the wall is sufficiently long, the boundary layer reaches a quasi-steady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness and then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently, but after the wall temperature growth is completed, the boundary layer develops as though the startup had been instantaneous. The steady state values of the boundary layer for both cases are ultimately the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subtropical south-east Queensland’s expanding population is expected to lead to a demand for an additional 754,000 dwellings by 2031. A legacy of poor housing design, minimal building regulations, an absence of building performance evaluation and various social and market factors has lead to a high and growing penetration of, and reliance on, air conditioners to provide comfort in this relatively benign climate. This reliance impacts on policy goals to adapt to and mitigate against global warming, electricity infrastructure investment and household resilience. Based on the concept of bioclimatic design, this field study scrutinizes eight non-air conditioned homes to develop a deeper understanding of the role of contemporary passive solar architecture in the delivery of thermally comfortable and resilient homes in the subtropics. These homes were found to provide inhabitants with an acceptable level of thermal comfort (18-28oC) for 77 – 97% of the year. Family expectations and experiences of comfort, and the various design strategies utilized were compared against the measured performance outcomes. This comparison revealed issues that limited quantification and implementation of design intent and highlighted factors that constrained system optimisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This summary is based on an international review of leading peer reviewed journals, in both technical and management fields. It draws on highly cited articles published between 2000 and 2009 to investigate the research question, "What are the diffusion determinants for passive building technologies in Australia?". Using a conceptual framework drawn from the innovation systems literature, this paper synthesises and interprets the literature to map the current state of passive building technologies in Australia and to analyse the drivers for, and obstacles to, their optimal diffusion. The paper concludes that the government has a key role to play through its influence over the specification of building codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ross River Virus has caused reported outbreaks of epidemic polyarthritis, a chronic debilitating disease associated with significant long-term morbidity in Australia and the Pacific region since the 1920s. To address this public health concern, a formalin- and UV-inactivated whole virus vaccine grown in animal protein-free cell culture was developed and tested in preclinical studies to evaluate immunogenicity and efficacy in animal models. After active immunizations, the vaccine dose-dependently induced antibodies and protected adult mice from viremia and interferon α/β receptor knock-out (IFN-α/βR(-/-)) mice from death and disease. In passive transfer studies, administration of human vaccinee sera followed by RRV challenge protected adult mice from viremia and young mice from development of arthritic signs similar to human RRV-induced disease. Based on the good correlation between antibody titers in human sera and protection of animals, a correlate of protection was defined. This is of particular importance for the evaluation of the vaccine because of the comparatively low annual incidence of RRV disease, which renders a classical efficacy trial impractical. Antibody-dependent enhancement of infection, did not occur in mice even at low to undetectable concentrations of vaccine-induced antibodies. Also, RRV vaccine-induced antibodies were partially cross-protective against infection with a related alphavirus, Chikungunya virus, and did not enhance infection. Based on these findings, the inactivated RRV vaccine is expected to be efficacious and protect humans from RRV disease

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates theoretically and numerically local heating effects in plasmon nanofocusing structures with a particular focus on the sharp free-standing metal wedges. The developed model separates plasmon propagation in the wedge from the resultant heating effects. Therefore, this model is only applicable where the temperature increments in a nanofocusing structure are sufficiently small not to result in significant variations of the metal permittivity in the wedge. The problem is reduced to a one-dimensional heating model with a distributed heat source resulting from plasmon dissipation in the metal wedge. A simple heat conduction equation governing the local heating effects in a nanofocusing structure is derived and solved numerically for plasmonic pulses of different lengths and reasonable energies. Both the possibility of achieving substantial local temperature increments in the wedge (with a significant self-influence of the heating plasmonic pulses), and the possibility of relatively weak heating (to ensure the validity of the previously developed nanofocusing theory) are demonstrated and discussed, including the future applications of the obtained results. Applicability conditions for the developed model are also derived and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report some initial findings from our investigations into the Australian Government’s Longitudinal Study of Australian Children dataset. It is revealed that the majority of Australian children are exceeding the government’s Screen Time recommendations and that most of their screen time is spent as TV viewing, as opposed to video game play or computer use. In light of this finding,we review the body of research surrounding children’s engagement in Screen Time activities and the associated positive and negative effects. Based on existing evidence,we define two categories of Screen Time—Active Screen Time and Passive Screen Time. It is proposed that this distinction provides a more accurate classification of Screen Time and a more informative lens through which to consider the associated benefits and detrimental effects for young children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, natural convection heat transfer and buoyancy driven flows have been investigated in a right angled triangular enclosure. The heater located on the bottom wall while the inclined wall is colder and the remaining walls are maintained as adiabatic. Governing equations of natural convection are solved through the finite volume approach, in which buoyancy is modeled via the Boussinesq approximation. Effects of different parameters such as Rayleigh number, aspect ratio, prantdl number and heater location are considered. Results show that heat transfer increases when the heater is moved toward the right corner of the enclosure. It is also revealed that increasing the Rayleigh number, increases the strength of free convection regime and consequently increases the value of heat transfer rate. Moreover, larger aspect ratio enclosure has larger Nusselt number value. In order to have better insight, streamline and isotherms are shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady boundary-layer development for thermomagnetic convection of paramagnetic fluids inside a square cavity has been considered in this study. The cavity is placed in a microgravity condition (no gravitation acceleration) and under a uniform magnetic field which acts vertically. A ramp temperature boundary condition is applied on left vertical side wall of the cavity where the temperature initially increases with time up to some specific time and maintain constant thereafter. A distinct magnetic convection boundary layer is developed adjacent to the left vertical wall due to the effect of the magnetic body force generated on the paramagnetic fluid. An improved scaling analysis has been performed using triple-layer integral method and verified by numerical simulations. The Prandtl number has been chosen greater than unity varied over 5-100. Moreover, the effect of various values of the magnetic parameter and magnetic Rayleigh number on the fluid flow and heat transfer has been shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium oxide nanotubes were obtained by an electrochemical anodization method. Scanning electron microscope results demonstrate that the diameter of the tubes is about 120 nm and the length of the tubes is around 13 μm. Transmission electron microscope results indicate that the nanotubes are assembled by numerous nanoparticles and tube-like structure remains well after heat treatment at 400-600 °C. The photocatalysis performance of the nanotubes was evaluated in terms of the decomposition rate of methyl orange under UV irradiation. The results show that the photocatalytic activity was enhanced through the heating treatment of the nanotubes, and the nanotubes heated at 600 °C exhibits the best photocatalytic activity. X-ray diffraction patterns indicate that there is no phase transformation during the heat treatment. Therefore, the enhanced activity can be attributed to the improvement of nanotubes crystallinity, which may provide more insights about the effect of the crystallinity on the photocatalytic performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow-balancing Starling response is diminished in both ventricles. The reliability of sensor and sensor-less based control systems which aim to control VAD flow based on preload have limitations and thus an alternative solution is desired. This study introduces a compliant inflow cannula (CIC) which could improve the preload sensitivity of a rotary VAD by passively altering VAD flow depending on preload. To evaluate the design, both the CIC and a standard rigid inflow cannula were inserted into a mock circulation loop to enable biventricular heart failure support using configurations of atrial and ventricular inflow, and arterial outflow cannulation. A range of left (LVAD) and right VAD (RVAD) rotational speeds were tested as well as step changes in systemic/pulmonary vascular resistance to alter relative preloads, with resulting flow rates recorded. Simulated suction events were observed, particularly at higher VAD speeds, during support with the rigid inflow cannula, while the CIC prevented suction events under all circumstances. The compliant section passively restricted its internal diameter as preload was reduced, which increased the VAD circuit resistance and thus reduced VAD flow. Therefore, a compliant inflow cannula could potentially be used as a passive control system to prevent suction events in rotary left, right and biventricular support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave power is used for heating and drying processes because of its faster and volumetric heating capability. Non-uniform temperature distribution during microwave application is a major drawback of these processes. Intermittent application of microwave potentially reduces the impact of non-uniformity and improves energy efficiency by redistributing the temperature. However, temperature re-distribution during intermittent microwave heating has not been investigated adequately. Consequently, in this study, a coupled electromagnetic with heat and mass transfer model was developed using the finite element method embedded in COMSOL-Multyphysics software. Particularly, the temperature redistribution due to intermittent heating was investigated. A series of experiments were performed to validate the simulation. The test specimen was an apple and the temperature distribution was closely monitored by a TIC (Thermal Imaging Camera). The simulated temperature profile matched closely with thermal images obtained from experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleation and growth of highly crystalline silicon nanoparticles in atmospheric-pressure low-temperature microplasmas at gas temperatures well below the Si crystallization threshold and within a short (100 μs) period of time are demonstrated and explained. The modeling reveals that collision-enhanced ion fluxes can effectively increase the heat flux on the nanoparticle surface and this heating is controlled by the ion density. It is shown that nanoparticles can be heated to temperatures above the crystallization threshold. These combined experimental and theoretical results confirm the effective heating and structure control of Si nanoparticles at atmospheric pressure and low gas temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma sheath, nanostructure growth, and thermal models are used to describe carbon nanofiber (CNF) growth and heating in a low-temperature plasma. It is found that when the H2 partial pressure is increased, H atom recombination and H ion neutralization are the main mechanisms responsible for energy release on the catalyst surface. Numerical results also show that process parameters such as the substrate potential, electron temperature and number density mainly affect the CNF growth rate and plasma heating at low catalyst temperatures. In contrast, gas pressure, ion temperature, and the C2H2:H2 supply ratio affect the CNF growth at all temperatures. It is shown that plasma-related processes substantially increase the catalyst particle temperature, in comparison to the substrate and the substrate-holding platform temperatures.