950 resultados para Passaic County (N.J.)--Maps.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

UW access only. Questions about spatial data can be directed to uwlib-gis [at] uw [dot] edu, include the URI address below and any information you have.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UW access only. Questions about spatial data can be directed to uwlib-gis [at] uw [dot] edu, include the URI address below and any information you have.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UW access only. Questions about spatial data can be directed to uwlib-gis [at] uw [dot] edu, include the URI address below and any information you have.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UW access only. Questions about spatial data can be directed to uwlib-gis [at] uw [dot] edu, include the URI address below and any information you have.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UW access only. Questions about spatial data can be directed to uwlib-gis [at] uw [dot] edu, include the URI address below and any information you have.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UW access only. Questions about spatial data can be directed to uwlib-gis [at] uw [dot] edu, include the URI address below and any information you have.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UW access only. Questions about spatial data can be directed to uwlib-gis [at] uw [dot] edu, include the URI address below and any information you have.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UW access only. Questions about spatial data can be directed to uwlib-gis [at] uw [dot] edu, include the URI address below and any information you have.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UW access only. Questions about spatial data can be directed to uwlib-gis [at] uw [dot] edu, include the URI address below and any information you have.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UW access only. Questions about spatial data can be directed to uwlib-gis [at] uw [dot] edu, include the URI address below and any information you have.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An abstract map of a part of the “Smith & Kerby tract” lying within the City of Brantford, County of Brant, Ontario. There is no date on the map. The map shows parts from McMurray’s Survey, Mrs. G.S. Wilkes Survey, and the Howell Survey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The UK Biodiversity Action Plan (UKBAP) identifies invertebrate species in danger of national extinction. For many of these species, targets for recovery specify the number of populations that should exist by a specific future date but offer no procedure to plan strategically to achieve the target for any species. 2. Here we describe techniques based upon geographic information systems (GIS) that produce conservation strategy maps (CSM) to assist with achieving recovery targets based on all available and relevant information. 3. The heath fritillary Mellicta athalia is a UKBAP species used here to illustrate the use of CSM. A phase 1 habitat survey was used to identify habitat polygons across the county of Kent, UK. These were systematically filtered using relevant habitat, botanical and autecological data to identify seven types of polygon, including those with extant colonies or in the vicinity of extant colonies, areas managed for conservation but without colonies, and polygons that had the appropriate habitat structure and may therefore be suitable for reintroduction. 4. Five clusters of polygons of interest were found across the study area. The CSM of two of them are illustrated here: the Blean Wood complex, which contains the existing colonies of heath fritillary in Kent, and the Orlestone Forest complex, which offers opportunities for reintroduction. 5. Synthesis and applications. Although the CSM concept is illustrated here for the UK, we suggest that CSM could be part of species conservation programmes throughout the world. CSM are dynamic and should be stored in electronic format, preferably on the world-wide web, so that they can be easily viewed and updated. CSM can be used to illustrate opportunities and to develop strategies with scientists and non-scientists, enabling the engagement of all communities in a conservation programme. CSM for different years can be presented to illustrate the progress of a plan or to provide continuous feedback on how a field scenario develops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The UK Biodiversity Action Plan (UKBAP) identifies invertebrate species in danger of national extinction. For many of these species, targets for recovery specify the number of populations that should exist by a specific future date but offer no procedure to plan strategically to achieve the target for any species. 2. Here we describe techniques based upon geographic information systems (GIS) that produce conservation strategy maps (CSM) to assist with achieving recovery targets based on all available and relevant information. 3. The heath fritillary Mellicta athalia is a UKBAP species used here to illustrate the use of CSM. A phase 1 habitat survey was used to identify habitat polygons across the county of Kent, UK. These were systematically filtered using relevant habitat, botanical and autecological data to identify seven types of polygon, including those with extant colonies or in the vicinity of extant colonies, areas managed for conservation but without colonies, and polygons that had the appropriate habitat structure and may therefore be suitable for reintroduction. 4. Five clusters of polygons of interest were found across the study area. The CSM of two of them are illustrated here: the Blean Wood complex, which contains the existing colonies of heath fritillary in Kent, and the Orlestone Forest complex, which offers opportunities for reintroduction. 5. Synthesis and applications. Although the CSM concept is illustrated here for the UK, we suggest that CSM could be part of species conservation programmes throughout the world. CSM are dynamic and should be stored in electronic format, preferably on the world-wide web, so that they can be easily viewed and updated. CSM can be used to illustrate opportunities and to develop strategies with scientists and non-scientists, enabling the engagement of all communities in a conservation programme. CSM for different years can be presented to illustrate the progress of a plan or to provide continuous feedback on how a field scenario develops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis assesses relationships between vegetation and topography and the impact of human tree-cutting on the vegetation of Union County during the early historical era (1755-1855). I use early warrant maps and forestry maps from the Pennsylvania historical archives and a warrantee map from the Union County courthouse depicting the distribution of witness trees and non-tree surveyed markers (posts and stones) in early European settlement land surveys to reconstruct the vegetation and compare vegetation by broad scale (mountains and valleys) and local scale (topographic classes with mountains and valleys) topography. I calculated marker density based on 2 km x 2 km grid cells to assess tree-cutting impacts. Valleys were mostly forests dominated by white oak (Quercus alba) with abundant hickory (Carya spp.), pine (Pinus spp.), and black oak (Quercus velutina), while pine dominated what were mostly pine-oak forests in the mountains. Within the valleys, pine was strongly associated with hilltops, eastern hemlock (Tsuga canadensis) was abundant on north slopes, hickory was associated with south slopes, and riparian zones had high frequencies of ash (Fraxinus spp.) and hickory. In the mountains, white oak was infrequent on south slopes, chestnut (Castanea dentata) was more abundant on south slopes and ridgetops than north slopes and mountain coves, and white oak and maple (Acer spp.) were common in riparian zones. Marker density analysis suggests that trees were still common over most of the landscape by 1855. The findings suggest there were large differences in vegetation between valleys and mountains due in part to differences in elevation, and vegetation differed more by topographic classes in the valleys than in the mountains. Possible areas of tree-cutting were evenly distributed by topographic classes, suggesting Europeans settlers were clearing land and harvesting timber in most areas of Union County.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Socio-Economic Atlas of Kenya is the first of its kind to offer high-resolution spatial depictions and analyses of data collected in the 2009 Kenya Population and Housing Census . The combination of geographic and socio-eco - nomic data enables policymakers at all levels, development experts, and other interested readers to gain a spatial understanding of dynamics affecting Kenya. Where is the informal economic sector most prominent? Which areas have adequate water and sanitation? Where is population growth being slowed effectively? How do education levels vary throughout the country? And where are poverty rates lowest? Answers to questions such as these, grouped into seven broad themes, are visually illustrated on high-resolution maps. By supplying precise information at the sub-location level and summarizing it at the county level, the atlas facilitates better planning that accounts for local contexts and needs. It is a valuable decision-support tool for government institutions at different administrative levels, educational institutions, and others. Three organizations – two in Kenya and one in Switzerland – worked together to create the atlas: the Kenya National Bureau of Statistics (KNBS), the Nanyuki-based Centre for Training and Integrated Research in ASAL Development (CETRAD), and the Centre for Development and Environment (CDE) at the University of Bern. Close cooperation between KNBS, CETRAD, and CDE maximized synergies and knowledge exchange.