926 resultados para Pareto-optimal solutions


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A single object must be allocated to at most one of n agents. Money transfers are possible and preferences are quasilinear. We offer an explicit description of the individually rational mechanisms which are Pareto-optimal in the class of feasible, strategy-proof, anonymous and envy-free mechanisms. These mechanisms form a one-parameter infinite family; the Vickrey mechanism is the only Groves mechanism in that family.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Assembly job shop scheduling problem (AJSP) is one of the most complicated combinatorial optimization problem that involves simultaneously scheduling the processing and assembly operations of complex structured products. The problem becomes even more complicated if a combination of two or more optimization criteria is considered. This thesis addresses an assembly job shop scheduling problem with multiple objectives. The objectives considered are to simultaneously minimizing makespan and total tardiness. In this thesis, two approaches viz., weighted approach and Pareto approach are used for solving the problem. However, it is quite difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. Two metaheuristic techniques namely, genetic algorithm and tabu search are investigated in this thesis for solving the multiobjective assembly job shop scheduling problems. Three algorithms based on the two metaheuristic techniques for weighted approach and Pareto approach are proposed for the multi-objective assembly job shop scheduling problem (MOAJSP). A new pairing mechanism is developed for crossover operation in genetic algorithm which leads to improved solutions and faster convergence. The performances of the proposed algorithms are evaluated through a set of test problems and the results are reported. The results reveal that the proposed algorithms based on weighted approach are feasible and effective for solving MOAJSP instances according to the weight assigned to each objective criterion and the proposed algorithms based on Pareto approach are capable of producing a number of good Pareto optimal scheduling plans for MOAJSP instances.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A hybridised and Knowledge-based Evolutionary Algorithm (KEA) is applied to the multi-criterion minimum spanning tree problems. Hybridisation is used across its three phases. In the first phase a deterministic single objective optimization algorithm finds the extreme points of the Pareto front. In the second phase a K-best approach finds the first neighbours of the extreme points, which serve as an elitist parent population to an evolutionary algorithm in the third phase. A knowledge-based mutation operator is applied in each generation to reproduce individuals that are at least as good as the unique parent. The advantages of KEA over previous algorithms include its speed (making it applicable to large real-world problems), its scalability to more than two criteria, and its ability to find both the supported and unsupported optimal solutions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[English] This paper is a tutorial introduction to pseudospectral optimal control. With pseudospectral methods, a function is approximated as a linear combination of smooth basis functions, which are often chosen to be Legendre or Chebyshev polynomials. Collocation of the differential-algebraic equations is performed at orthogonal collocation points, which are selected to yield interpolation of high accuracy. Pseudospectral methods directly discretize the original optimal control problem to recast it into a nonlinear programming format. A numerical optimizer is then employed to find approximate local optimal solutions. The paper also briefly describes the functionality and implementation of PSOPT, an open source software package written in C++ that employs pseudospectral discretization methods to solve multi-phase optimal control problems. The software implements the Legendre and Chebyshev pseudospectral methods, and it has useful features such as automatic differentiation, sparsity detection, and automatic scaling. The use of pseudospectral methods is illustrated in two problems taken from the literature on computational optimal control. [Portuguese] Este artigo e um tutorial introdutorio sobre controle otimo pseudo-espectral. Em metodos pseudo-espectrais, uma funcao e aproximada como uma combinacao linear de funcoes de base suaves, tipicamente escolhidas como polinomios de Legendre ou Chebyshev. A colocacao de equacoes algebrico-diferenciais e realizada em pontos de colocacao ortogonal, que sao selecionados de modo a minimizar o erro de interpolacao. Metodos pseudoespectrais discretizam o problema de controle otimo original de modo a converte-lo em um problema de programa cao nao-linear. Um otimizador numerico e entao empregado para obter solucoes localmente otimas. Este artigo tambem descreve sucintamente a funcionalidade e a implementacao de um pacote computacional de codigo aberto escrito em C++ chamado PSOPT. Tal pacote emprega metodos de discretizacao pseudo-spectrais para resolver problemas de controle otimo com multiplas fase. O PSOPT permite a utilizacao de metodos de Legendre ou Chebyshev, e possui caractersticas uteis tais como diferenciacao automatica, deteccao de esparsidade e escalonamento automatico. O uso de metodos pseudo-espectrais e ilustrado em dois problemas retirados da literatura de controle otimo computacional.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When modeling real-world decision-theoretic planning problems in the Markov Decision Process (MDP) framework, it is often impossible to obtain a completely accurate estimate of transition probabilities. For example, natural uncertainty arises in the transition specification due to elicitation of MOP transition models from an expert or estimation from data, or non-stationary transition distributions arising from insufficient state knowledge. In the interest of obtaining the most robust policy under transition uncertainty, the Markov Decision Process with Imprecise Transition Probabilities (MDP-IPs) has been introduced to model such scenarios. Unfortunately, while various solution algorithms exist for MDP-IPs, they often require external calls to optimization routines and thus can be extremely time-consuming in practice. To address this deficiency, we introduce the factored MDP-IP and propose efficient dynamic programming methods to exploit its structure. Noting that the key computational bottleneck in the solution of factored MDP-IPs is the need to repeatedly solve nonlinear constrained optimization problems, we show how to target approximation techniques to drastically reduce the computational overhead of the nonlinear solver while producing bounded, approximately optimal solutions. Our results show up to two orders of magnitude speedup in comparison to traditional ""flat"" dynamic programming approaches and up to an order of magnitude speedup over the extension of factored MDP approximate value iteration techniques to MDP-IPs while producing the lowest error of any approximation algorithm evaluated. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The p-median problem is often used to locate p service centers by minimizing their distances to a geographically distributed demand (n). The optimal locations are sensitive to geographical context such as road network and demand points especially when they are asymmetrically distributed in the plane. Most studies focus on evaluating performances of the p-median model when p and n vary. To our knowledge this is not a very well-studied problem when the road network is alternated especially when it is applied in a real world context. The aim in this study is to analyze how the optimal location solutions vary, using the p-median model, when the density in the road network is alternated. The investigation is conducted by the means of a case study in a region in Sweden with an asymmetrically distributed population (15,000 weighted demand points), Dalecarlia. To locate 5 to 50 service centers we use the national transport administrations official road network (NVDB). The road network consists of 1.5 million nodes. To find the optimal location we start with 500 candidate nodes in the network and increase the number of candidate nodes in steps up to 67,000. To find the optimal solution we use a simulated annealing algorithm with adaptive tuning of the temperature. The results show that there is a limited improvement in the optimal solutions when nodes in the road network increase and p is low. When p is high the improvements are larger. The results also show that choice of the best network depends on p. The larger p the larger density of the network is needed. 

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To have good data quality with high complexity is often seen to be important. Intuition says that the higher accuracy and complexity the data have the better the analytic solutions becomes if it is possible to handle the increasing computing time. However, for most of the practical computational problems, high complexity data means that computational times become too long or that heuristics used to solve the problem have difficulties to reach good solutions. This is even further stressed when the size of the combinatorial problem increases. Consequently, we often need a simplified data to deal with complex combinatorial problems. In this study we stress the question of how the complexity and accuracy in a network affect the quality of the heuristic solutions for different sizes of the combinatorial problem. We evaluate this question by applying the commonly used p-median model, which is used to find optimal locations in a network of p supply points that serve n demand points. To evaluate this, we vary both the accuracy (the number of nodes) of the network and the size of the combinatorial problem (p). The investigation is conducted by the means of a case study in a region in Sweden with an asymmetrically distributed population (15,000 weighted demand points), Dalecarlia. To locate 5 to 50 supply points we use the national transport administrations official road network (NVDB). The road network consists of 1.5 million nodes. To find the optimal location we start with 500 candidate nodes in the network and increase the number of candidate nodes in steps up to 67,000 (which is aggregated from the 1.5 million nodes). To find the optimal solution we use a simulated annealing algorithm with adaptive tuning of the temperature. The results show that there is a limited improvement in the optimal solutions when the accuracy in the road network increase and the combinatorial problem (low p) is simple. When the combinatorial problem is complex (large p) the improvements of increasing the accuracy in the road network are much larger. The results also show that choice of the best accuracy of the network depends on the complexity of the combinatorial (varying p) problem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider exchange economies with a continuum of agents and differential information about finitely many states of nature. It was proved in Einy, Moreno and Shitovitz (2001) that if we allow for free disposal in the market clearing (feasibility) constraints then an irreducible economy has a competitive (or Walrasian expectations) equilibrium, and moreover, the set of competitive equilibrium allocations coincides with the private core. However when feasibility is defined with free disposal, competitive equilibrium allocations may not be incentive compatible and contracts may not be enforceable (see e.g. Glycopantis, Muir and Yannelis (2002)). This is the main motivation for considering equilibrium solutions with exact feasibility. We first prove that the results in Einy et al. (2001) are still valid without freedisposal. Then we define an incentive compatibility property motivated by the issue of contracts’ execution and we prove that every Pareto optimal exact feasible allocation is incentive compatible, implying that contracts of competitive or core allocations are enforceable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider exchange economies with a continuum of agents and differential information about finitely many states of nature. It was proved in Einy, Moreno and Shitovitz (2001) that if we allow for free disposal in the market clearing (feasibility) constraints then an irreducible economy has a competitive (or Walrasian expectations) equilibrium, and moreover, the set of competitive equilibrium allocations coincides with the private core. However when feasibility is defined with free disposal, competitive equilibrium allocations may not be incentive compatible and contracts may not be enforceable (see e.g. Glycopantis, Muir and Yannelis (2002)). This is the main motivation for considering equilibrium solutions with exact feasibility. We first prove that the results in Einy et al. (2001) are still valid without free-disposal. Then we define an incentive compatibility property motivated by the issue of contracts’ execution and we prove that every Pareto optimal exact feasible allocation is incentive compatible, implying that contracts of a competitive or core allocations are enforceable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We discuss a general approach to building non-asymptotic confidence bounds for stochastic optimization problems. Our principal contribution is the observation that a Sample Average Approximation of a problem supplies upper and lower bounds for the optimal value of the problem which are essentially better than the quality of the corresponding optimal solutions. At the same time, such bounds are more reliable than “standard” confidence bounds obtained through the asymptotic approach. We also discuss bounding the optimal value of MinMax Stochastic Optimization and stochastically constrained problems. We conclude with a small simulation study illustrating the numerical behavior of the proposed bounds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper studies the problem of applying an impulsive control in a spacecraft that is performing a Swing-By maneuver. The objective is to study the changes in velocity, energy and angular momentum for this maneuver as a function of the three usual parameters of the standard Swing-By plus the three parameters (the magnitude of the impulse, the point of its application and the angle between the impulse and the velocity of the spacecraft) that specify the impulse applied. The dynamics used is the restricted three body problem under the regularization of Lemaitre, made to increase the accuracy of the numerical integration near the primaries. The present research develops an algorithm to calculate the variation of energy and angular momentum in a maneuver where the application of the impulsive control occurs before or after the passage of the spacecraft by the periapsis, but within the sphere of influence of the secondary body and in a non-tangential direction. Using this approach, it is possible to find the best position and direction to apply the impulse to maximize the energy change of the total maneuver. The results showed that the application of the impulse at the periapsis and in the direction of motion of the spacecraft is usually not the optimal solution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A localização de bancos de capacitores nas redes de distribuição de energia elétrica, corretamente dimensionados, busca compensar eventuais excessos de circulação de potência reativa pelas linhas, o que implica a redução de custos operacionais pela redução das perdas de energia e um aumento da capacidade de transmissão de potência ativa assegurando os níveis estabelecidos de tensão e fator de potência simultaneamente. A proliferação das cargas não lineares provocou uma mudança nos cenários de estudo dos sistemas elétricos de potência devido aos efeitos nocivos que os harmônicos gerados por elas ocasionam sobre a qualidade da energia elétrica. Considerando este novo cenário, esta tese tem como objetivo geral desenvolver uma ferramenta computacional utilizando técnicas de inteligência computacional apoiada em algoritmos genéticos (AG), para a otimização multiobjetivo da compensação da potência reativa em redes elétricas de distribuição capaz de localizar e dimensionar de forma ótima as unidades de compensação necessárias para obter os melhores benefícios econômicos e a manutenção dos índices de qualidade da energia estabelecidos pelas normas brasileiras. Como Inovação Tecnológica do trabalho a ferramenta computacional desenvolvida permite otimizar a compensação da potência reativa para melhorar do fator de potência em redes de distribuição contaminadas com harmônicos que, diferentemente de métodos anteriores, não só emprega bancos de capacitores, mas também filtros de harmônicos com esse objetivo. Utiliza-se o algoritmo NSGA-II, que determina as soluções ótimas de Pareto para o problema e permite ao especialista determinar as soluções mais efetivas. A proposta para a solução do problema apresenta várias inovações podendo-se destacar que a solução obtida permite determinar a compensação de potência reativa com capacitores em sistemas com certa penetração harmônica, atendendo a normas de qualidade de energia pertinentes, com relação aos níveis de distorção harmônica tolerados.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS