917 resultados para Parallel or distributed processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unstructured mesh based codes for the modelling of continuum physics phenomena have evolved to provide the facility to model complex interacting systems. Such codes have the potential to provide a high performance on parallel platforms for a small investment in programming. The critical parameters for success are to minimise changes to the code to allow for maintenance while providing high parallel efficiency, scalability to large numbers of processors and portability to a wide range of platforms. The paradigm of domain decomposition with message passing has for some time been demonstrated to provide a high level of efficiency, scalability and portability across shared and distributed memory systems without the need to re-author the code into a new language. This paper addresses these issues in the parallelisation of a complex three dimensional unstructured mesh Finite Volume multiphysics code and discusses the implications of automating the parallelisation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now clear that the concept of a HPC compiler which automatically produces highly efficient parallel implementations is a pipe-dream. Another route is to recognise from the outset that user information is required and to develop tools that embed user interaction in the transformation of code from scalar to parallel form, and then use conventional compilers with a set of communication calls. This represents the key idea underlying the development of the CAPTools software environment. The initial version of CAPTools is focused upon single block structured mesh computational mechanics codes. The capability for unstructured mesh codes is under test now and block structured meshes will be included next. The parallelisation process can be completed rapidly for modest codes and the parallel performance approaches that which is delivered by hand parallelisations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, applications in domains such as telecommunications, network security or large scale sensor networks showed the limits of the traditional store-then-process paradigm. In this context, Stream Processing Engines emerged as a candidate solution for all these applications demanding for high processing capacity with low processing latency guarantees. With Stream Processing Engines, data streams are not persisted but rather processed on the fly, producing results continuously. Current Stream Processing Engines, either centralized or distributed, do not scale with the input load due to single-node bottlenecks. Moreover, they are based on static configurations that lead to either under or over-provisioning. This Ph.D. thesis discusses StreamCloud, an elastic paralleldistributed stream processing engine that enables for processing of large data stream volumes. Stream- Cloud minimizes the distribution and parallelization overhead introducing novel techniques that split queries into parallel subqueries and allocate them to independent sets of nodes. Moreover, Stream- Cloud elastic and dynamic load balancing protocols enable for effective adjustment of resources depending on the incoming load. Together with the parallelization and elasticity techniques, Stream- Cloud defines a novel fault tolerance protocol that introduces minimal overhead while providing fast recovery. StreamCloud has been fully implemented and evaluated using several real word applications such as fraud detection applications or network analysis applications. The evaluation, conducted using a cluster with more than 300 cores, demonstrates the large scalability, the elasticity and fault tolerance effectiveness of StreamCloud. Resumen En los útimos años, aplicaciones en dominios tales como telecomunicaciones, seguridad de redes y redes de sensores de gran escala se han encontrado con múltiples limitaciones en el paradigma tradicional de bases de datos. En este contexto, los sistemas de procesamiento de flujos de datos han emergido como solución a estas aplicaciones que demandan una alta capacidad de procesamiento con una baja latencia. En los sistemas de procesamiento de flujos de datos, los datos no se persisten y luego se procesan, en su lugar los datos son procesados al vuelo en memoria produciendo resultados de forma continua. Los actuales sistemas de procesamiento de flujos de datos, tanto los centralizados, como los distribuidos, no escalan respecto a la carga de entrada del sistema debido a un cuello de botella producido por la concentración de flujos de datos completos en nodos individuales. Por otra parte, éstos están basados en configuraciones estáticas lo que conducen a un sobre o bajo aprovisionamiento. Esta tesis doctoral presenta StreamCloud, un sistema elástico paralelo-distribuido para el procesamiento de flujos de datos que es capaz de procesar grandes volúmenes de datos. StreamCloud minimiza el coste de distribución y paralelización por medio de una técnica novedosa la cual particiona las queries en subqueries paralelas repartiéndolas en subconjuntos de nodos independientes. Ademas, Stream- Cloud posee protocolos de elasticidad y equilibrado de carga que permiten una optimización de los recursos dependiendo de la carga del sistema. Unidos a los protocolos de paralelización y elasticidad, StreamCloud define un protocolo de tolerancia a fallos que introduce un coste mínimo mientras que proporciona una rápida recuperación. StreamCloud ha sido implementado y evaluado mediante varias aplicaciones del mundo real tales como aplicaciones de detección de fraude o aplicaciones de análisis del tráfico de red. La evaluación ha sido realizada en un cluster con más de 300 núcleos, demostrando la alta escalabilidad y la efectividad tanto de la elasticidad, como de la tolerancia a fallos de StreamCloud.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time embedded applications require to process large amounts of data within small time windows. Parallelize and distribute workloads adaptively is suitable solution for computational demanding applications. The purpose of the Parallel Real-Time Framework for distributed adaptive embedded systems is to guarantee local and distributed processing of real-time applications. This work identifies some promising research directions for parallel/distributed real-time embedded applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human primary auditory cortex (AI) is surrounded by several other auditory areas, which can be identified by cyto-, myelo- and chemoarchitectonic criteria. We report here on the pattern of calcium-binding protein immunoreactivity within these areas. The supratemporal regions of four normal human brains (eight hemispheres) were processed histologically, and serial sections were stained for parvalbumin, calretinin or calbindin. Each calcium-binding protein yielded a specific pattern of labelling, which differed between auditory areas. In AI, defined as area TC [see C. von Economo and L. Horn (1930) Z. Ges. Neurol. Psychiatr.,130, 678-757], parvalbumin labelling was dark in layer IV; several parvalbumin-positive multipolar neurons were distributed in layers III and IV. Calbindin yielded dark labelling in layers I-III and V; it revealed numerous multipolar and pyramidal neurons in layers II and III. Calretinin labelling was lighter than that of parvalbumin or calbindin in AI; calretinin-positive bipolar and bitufted neurons were present in supragranular layers. In non-primary auditory areas, the intensity of labelling tended to become progressively lighter while moving away from AI, with qualitative differences between the cytoarchitectonically defined areas. In analogy to non-human primates, our results suggest differences in intrinsic organization between auditory areas that are compatible with parallel and hierarchical processing of auditory information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The proliferation of wireless sensor networks and the variety of envisioned applications associated with them has motivated the development of distributed algorithms for collaborative processing over networked systems. One of the applications that has attracted the attention of the researchers is that of target localization where the nodes of the network try to estimate the position of an unknown target that lies within its coverage area. Particularly challenging is the problem of estimating the target’s position when we use received signal strength indicator (RSSI) due to the nonlinear relationship between the measured signal and the true position of the target. Many of the existing approaches suffer either from high computational complexity (e.g., particle filters) or lack of accuracy. Further, many of the proposed solutions are centralized which make their application to a sensor network questionable. Depending on the application at hand and, from a practical perspective it could be convenient to find a balance between localization accuracy and complexity. Into this direction we approach the maximum likelihood location estimation problem by solving a suboptimal (and more tractable) problem. One of the main advantages of the proposed scheme is that it allows for a decentralized implementation using distributed processing tools (e.g., consensus and convex optimization) and therefore, it is very suitable to be implemented in real sensor networks. If further accuracy is needed an additional refinement step could be performed around the found solution. Under the assumption of independent noise among the nodes such local search can be done in a fully distributed way using a distributed version of the Gauss-Newton method based on consensus. Regardless of the underlying application or function of the sensor network it is al¬ways necessary to have a mechanism for data reporting. While some approaches use a special kind of nodes (called sink nodes) for data harvesting and forwarding to the outside world, there are however some scenarios where such an approach is impractical or even impossible to deploy. Further, such sink nodes become a bottleneck in terms of traffic flow and power consumption. To overcome these issues instead of using sink nodes for data reporting one could use collaborative beamforming techniques to forward directly the generated data to a base station or gateway to the outside world. In a dis-tributed environment like a sensor network nodes cooperate in order to form a virtual antenna array that can exploit the benefits of multi-antenna communications. In col-laborative beamforming nodes synchronize their phases in order to add constructively at the receiver. Some of the inconveniences associated with collaborative beamforming techniques is that there is no control over the radiation pattern since it is treated as a random quantity. This may cause interference to other coexisting systems and fast bat-tery depletion at the nodes. Since energy-efficiency is a major design issue we consider the development of a distributed collaborative beamforming scheme that maximizes the network lifetime while meeting some quality of service (QoS) requirement at the re¬ceiver side. Using local information about battery status and channel conditions we find distributed algorithms that converge to the optimal centralized beamformer. While in the first part we consider only battery depletion due to communications beamforming, we extend the model to account for more realistic scenarios by the introduction of an additional random energy consumption. It is shown how the new problem generalizes the original one and under which conditions it is easily solvable. By formulating the problem under the energy-efficiency perspective the network’s lifetime is significantly improved. Resumen La proliferación de las redes inalámbricas de sensores junto con la gran variedad de posi¬bles aplicaciones relacionadas, han motivado el desarrollo de herramientas y algoritmos necesarios para el procesado cooperativo en sistemas distribuidos. Una de las aplicaciones que suscitado mayor interés entre la comunidad científica es la de localization, donde el conjunto de nodos de la red intenta estimar la posición de un blanco localizado dentro de su área de cobertura. El problema de la localization es especialmente desafiante cuando se usan niveles de energía de la seal recibida (RSSI por sus siglas en inglés) como medida para la localization. El principal inconveniente reside en el hecho que el nivel de señal recibida no sigue una relación lineal con la posición del blanco. Muchas de las soluciones actuales al problema de localization usando RSSI se basan en complejos esquemas centralizados como filtros de partículas, mientas que en otras se basan en esquemas mucho más simples pero con menor precisión. Además, en muchos casos las estrategias son centralizadas lo que resulta poco prácticos para su implementación en redes de sensores. Desde un punto de vista práctico y de implementation, es conveniente, para ciertos escenarios y aplicaciones, el desarrollo de alternativas que ofrezcan un compromiso entre complejidad y precisión. En esta línea, en lugar de abordar directamente el problema de la estimación de la posición del blanco bajo el criterio de máxima verosimilitud, proponemos usar una formulación subóptima del problema más manejable analíticamente y que ofrece la ventaja de permitir en¬contrar la solución al problema de localization de una forma totalmente distribuida, convirtiéndola así en una solución atractiva dentro del contexto de redes inalámbricas de sensores. Para ello, se usan herramientas de procesado distribuido como los algorit¬mos de consenso y de optimización convexa en sistemas distribuidos. Para aplicaciones donde se requiera de un mayor grado de precisión se propone una estrategia que con¬siste en la optimización local de la función de verosimilitud entorno a la estimación inicialmente obtenida. Esta optimización se puede realizar de forma descentralizada usando una versión basada en consenso del método de Gauss-Newton siempre y cuando asumamos independencia de los ruidos de medida en los diferentes nodos. Independientemente de la aplicación subyacente de la red de sensores, es necesario tener un mecanismo que permita recopilar los datos provenientes de la red de sensores. Una forma de hacerlo es mediante el uso de uno o varios nodos especiales, llamados nodos “sumidero”, (sink en inglés) que actúen como centros recolectores de información y que estarán equipados con hardware adicional que les permita la interacción con el exterior de la red. La principal desventaja de esta estrategia es que dichos nodos se convierten en cuellos de botella en cuanto a tráfico y capacidad de cálculo. Como alter¬nativa se pueden usar técnicas cooperativas de conformación de haz (beamforming en inglés) de manera que el conjunto de la red puede verse como un único sistema virtual de múltiples antenas y, por tanto, que exploten los beneficios que ofrecen las comu¬nicaciones con múltiples antenas. Para ello, los distintos nodos de la red sincronizan sus transmisiones de manera que se produce una interferencia constructiva en el recep¬tor. No obstante, las actuales técnicas se basan en resultados promedios y asintóticos, cuando el número de nodos es muy grande. Para una configuración específica se pierde el control sobre el diagrama de radiación causando posibles interferencias sobre sis¬temas coexistentes o gastando más potencia de la requerida. La eficiencia energética es una cuestión capital en las redes inalámbricas de sensores ya que los nodos están equipados con baterías. Es por tanto muy importante preservar la batería evitando cambios innecesarios y el consecuente aumento de costes. Bajo estas consideraciones, se propone un esquema de conformación de haz que maximice el tiempo de vida útil de la red, entendiendo como tal el máximo tiempo que la red puede estar operativa garantizando unos requisitos de calidad de servicio (QoS por sus siglas en inglés) que permitan una decodificación fiable de la señal recibida en la estación base. Se proponen además algoritmos distribuidos que convergen a la solución centralizada. Inicialmente se considera que la única causa de consumo energético se debe a las comunicaciones con la estación base. Este modelo de consumo energético es modificado para tener en cuenta otras formas de consumo de energía derivadas de procesos inherentes al funcionamiento de la red como la adquisición y procesado de datos, las comunicaciones locales entre nodos, etc. Dicho consumo adicional de energía se modela como una variable aleatoria en cada nodo. Se cambia por tanto, a un escenario probabilístico que generaliza el caso determinista y se proporcionan condiciones bajo las cuales el problema se puede resolver de forma eficiente. Se demuestra que el tiempo de vida de la red mejora de forma significativa usando el criterio propuesto de eficiencia energética.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis doctoral se enmarca dentro del campo de los sistemas embebidos reconfigurables, redes de sensores inalámbricas para aplicaciones de altas prestaciones, y computación distribuida. El documento se centra en el estudio de alternativas de procesamiento para sistemas embebidos autónomos distribuidos de altas prestaciones (por sus siglas en inglés, High-Performance Autonomous Distributed Systems (HPADS)), así como su evolución hacia el procesamiento de alta resolución. El estudio se ha llevado a cabo tanto a nivel de plataforma como a nivel de las arquitecturas de procesamiento dentro de la plataforma con el objetivo de optimizar aspectos tan relevantes como la eficiencia energética, la capacidad de cómputo y la tolerancia a fallos del sistema. Los HPADS son sistemas realimentados, normalmente formados por elementos distribuidos conectados o no en red, con cierta capacidad de adaptación, y con inteligencia suficiente para llevar a cabo labores de prognosis y/o autoevaluación. Esta clase de sistemas suele formar parte de sistemas más complejos llamados sistemas ciber-físicos (por sus siglas en inglés, Cyber-Physical Systems (CPSs)). Los CPSs cubren un espectro enorme de aplicaciones, yendo desde aplicaciones médicas, fabricación, o aplicaciones aeroespaciales, entre otras muchas. Para el diseño de este tipo de sistemas, aspectos tales como la confiabilidad, la definición de modelos de computación, o el uso de metodologías y/o herramientas que faciliten el incremento de la escalabilidad y de la gestión de la complejidad, son fundamentales. La primera parte de esta tesis doctoral se centra en el estudio de aquellas plataformas existentes en el estado del arte que por sus características pueden ser aplicables en el campo de los CPSs, así como en la propuesta de un nuevo diseño de plataforma de altas prestaciones que se ajuste mejor a los nuevos y más exigentes requisitos de las nuevas aplicaciones. Esta primera parte incluye descripción, implementación y validación de la plataforma propuesta, así como conclusiones sobre su usabilidad y sus limitaciones. Los principales objetivos para el diseño de la plataforma propuesta se enumeran a continuación: • Estudiar la viabilidad del uso de una FPGA basada en RAM como principal procesador de la plataforma en cuanto a consumo energético y capacidad de cómputo. • Propuesta de técnicas de gestión del consumo de energía en cada etapa del perfil de trabajo de la plataforma. •Propuestas para la inclusión de reconfiguración dinámica y parcial de la FPGA (por sus siglas en inglés, Dynamic Partial Reconfiguration (DPR)) de forma que sea posible cambiar ciertas partes del sistema en tiempo de ejecución y sin necesidad de interrumpir al resto de las partes. Evaluar su aplicabilidad en el caso de HPADS. Las nuevas aplicaciones y nuevos escenarios a los que se enfrentan los CPSs, imponen nuevos requisitos en cuanto al ancho de banda necesario para el procesamiento de los datos, así como en la adquisición y comunicación de los mismos, además de un claro incremento en la complejidad de los algoritmos empleados. Para poder cumplir con estos nuevos requisitos, las plataformas están migrando desde sistemas tradicionales uni-procesador de 8 bits, a sistemas híbridos hardware-software que incluyen varios procesadores, o varios procesadores y lógica programable. Entre estas nuevas arquitecturas, las FPGAs y los sistemas en chip (por sus siglas en inglés, System on Chip (SoC)) que incluyen procesadores embebidos y lógica programable, proporcionan soluciones con muy buenos resultados en cuanto a consumo energético, precio, capacidad de cómputo y flexibilidad. Estos buenos resultados son aún mejores cuando las aplicaciones tienen altos requisitos de cómputo y cuando las condiciones de trabajo son muy susceptibles de cambiar en tiempo real. La plataforma propuesta en esta tesis doctoral se ha denominado HiReCookie. La arquitectura incluye una FPGA basada en RAM como único procesador, así como un diseño compatible con la plataforma para redes de sensores inalámbricas desarrollada en el Centro de Electrónica Industrial de la Universidad Politécnica de Madrid (CEI-UPM) conocida como Cookies. Esta FPGA, modelo Spartan-6 LX150, era, en el momento de inicio de este trabajo, la mejor opción en cuanto a consumo y cantidad de recursos integrados, cuando además, permite el uso de reconfiguración dinámica y parcial. Es importante resaltar que aunque los valores de consumo son los mínimos para esta familia de componentes, la potencia instantánea consumida sigue siendo muy alta para aquellos sistemas que han de trabajar distribuidos, de forma autónoma, y en la mayoría de los casos alimentados por baterías. Por esta razón, es necesario incluir en el diseño estrategias de ahorro energético para incrementar la usabilidad y el tiempo de vida de la plataforma. La primera estrategia implementada consiste en dividir la plataforma en distintas islas de alimentación de forma que sólo aquellos elementos que sean estrictamente necesarios permanecerán alimentados, cuando el resto puede estar completamente apagado. De esta forma es posible combinar distintos modos de operación y así optimizar enormemente el consumo de energía. El hecho de apagar la FPGA para ahora energía durante los periodos de inactividad, supone la pérdida de la configuración, puesto que la memoria de configuración es una memoria volátil. Para reducir el impacto en el consumo y en el tiempo que supone la reconfiguración total de la plataforma una vez encendida, en este trabajo, se incluye una técnica para la compresión del archivo de configuración de la FPGA, de forma que se consiga una reducción del tiempo de configuración y por ende de la energía consumida. Aunque varios de los requisitos de diseño pueden satisfacerse con el diseño de la plataforma HiReCookie, es necesario seguir optimizando diversos parámetros tales como el consumo energético, la tolerancia a fallos y la capacidad de procesamiento. Esto sólo es posible explotando todas las posibilidades ofrecidas por la arquitectura de procesamiento en la FPGA. Por lo tanto, la segunda parte de esta tesis doctoral está centrada en el diseño de una arquitectura reconfigurable denominada ARTICo3 (Arquitectura Reconfigurable para el Tratamiento Inteligente de Cómputo, Confiabilidad y Consumo de energía) para la mejora de estos parámetros por medio de un uso dinámico de recursos. ARTICo3 es una arquitectura de procesamiento para FPGAs basadas en RAM, con comunicación tipo bus, preparada para dar soporte para la gestión dinámica de los recursos internos de la FPGA en tiempo de ejecución gracias a la inclusión de reconfiguración dinámica y parcial. Gracias a esta capacidad de reconfiguración parcial, es posible adaptar los niveles de capacidad de procesamiento, energía consumida o tolerancia a fallos para responder a las demandas de la aplicación, entorno, o métricas internas del dispositivo mediante la adaptación del número de recursos asignados para cada tarea. Durante esta segunda parte de la tesis se detallan el diseño de la arquitectura, su implementación en la plataforma HiReCookie, así como en otra familia de FPGAs, y su validación por medio de diferentes pruebas y demostraciones. Los principales objetivos que se plantean la arquitectura son los siguientes: • Proponer una metodología basada en un enfoque multi-hilo, como las propuestas por CUDA (por sus siglas en inglés, Compute Unified Device Architecture) u Open CL, en la cual distintos kernels, o unidades de ejecución, se ejecuten en un numero variable de aceleradores hardware sin necesidad de cambios en el código de aplicación. • Proponer un diseño y proporcionar una arquitectura en la que las condiciones de trabajo cambien de forma dinámica dependiendo bien de parámetros externos o bien de parámetros que indiquen el estado de la plataforma. Estos cambios en el punto de trabajo de la arquitectura serán posibles gracias a la reconfiguración dinámica y parcial de aceleradores hardware en tiempo real. • Explotar las posibilidades de procesamiento concurrente, incluso en una arquitectura basada en bus, por medio de la optimización de las transacciones en ráfaga de datos hacia los aceleradores. •Aprovechar las ventajas ofrecidas por la aceleración lograda por módulos puramente hardware para conseguir una mejor eficiencia energética. • Ser capaces de cambiar los niveles de redundancia de hardware de forma dinámica según las necesidades del sistema en tiempo real y sin cambios para el código de aplicación. • Proponer una capa de abstracción entre el código de aplicación y el uso dinámico de los recursos de la FPGA. El diseño en FPGAs permite la utilización de módulos hardware específicamente creados para una aplicación concreta. De esta forma es posible obtener rendimientos mucho mayores que en el caso de las arquitecturas de propósito general. Además, algunas FPGAs permiten la reconfiguración dinámica y parcial de ciertas partes de su lógica en tiempo de ejecución, lo cual dota al diseño de una gran flexibilidad. Los fabricantes de FPGAs ofrecen arquitecturas predefinidas con la posibilidad de añadir bloques prediseñados y poder formar sistemas en chip de una forma más o menos directa. Sin embargo, la forma en la que estos módulos hardware están organizados dentro de la arquitectura interna ya sea estática o dinámicamente, o la forma en la que la información se intercambia entre ellos, influye enormemente en la capacidad de cómputo y eficiencia energética del sistema. De la misma forma, la capacidad de cargar módulos hardware bajo demanda, permite añadir bloques redundantes que permitan aumentar el nivel de tolerancia a fallos de los sistemas. Sin embargo, la complejidad ligada al diseño de bloques hardware dedicados no debe ser subestimada. Es necesario tener en cuenta que el diseño de un bloque hardware no es sólo su propio diseño, sino también el diseño de sus interfaces, y en algunos casos de los drivers software para su manejo. Además, al añadir más bloques, el espacio de diseño se hace más complejo, y su programación más difícil. Aunque la mayoría de los fabricantes ofrecen interfaces predefinidas, IPs (por sus siglas en inglés, Intelectual Property) comerciales y plantillas para ayudar al diseño de los sistemas, para ser capaces de explotar las posibilidades reales del sistema, es necesario construir arquitecturas sobre las ya establecidas para facilitar el uso del paralelismo, la redundancia, y proporcionar un entorno que soporte la gestión dinámica de los recursos. Para proporcionar este tipo de soporte, ARTICo3 trabaja con un espacio de soluciones formado por tres ejes fundamentales: computación, consumo energético y confiabilidad. De esta forma, cada punto de trabajo se obtiene como una solución de compromiso entre estos tres parámetros. Mediante el uso de la reconfiguración dinámica y parcial y una mejora en la transmisión de los datos entre la memoria principal y los aceleradores, es posible dedicar un número variable de recursos en el tiempo para cada tarea, lo que hace que los recursos internos de la FPGA sean virtualmente ilimitados. Este variación en el tiempo del número de recursos por tarea se puede usar bien para incrementar el nivel de paralelismo, y por ende de aceleración, o bien para aumentar la redundancia, y por lo tanto el nivel de tolerancia a fallos. Al mismo tiempo, usar un numero óptimo de recursos para una tarea mejora el consumo energético ya que bien es posible disminuir la potencia instantánea consumida, o bien el tiempo de procesamiento. Con el objetivo de mantener los niveles de complejidad dentro de unos límites lógicos, es importante que los cambios realizados en el hardware sean totalmente transparentes para el código de aplicación. A este respecto, se incluyen distintos niveles de transparencia: • Transparencia a la escalabilidad: los recursos usados por una misma tarea pueden ser modificados sin que el código de aplicación sufra ningún cambio. • Transparencia al rendimiento: el sistema aumentara su rendimiento cuando la carga de trabajo aumente, sin cambios en el código de aplicación. • Transparencia a la replicación: es posible usar múltiples instancias de un mismo módulo bien para añadir redundancia o bien para incrementar la capacidad de procesamiento. Todo ello sin que el código de aplicación cambie. • Transparencia a la posición: la posición física de los módulos hardware es arbitraria para su direccionamiento desde el código de aplicación. • Transparencia a los fallos: si existe un fallo en un módulo hardware, gracias a la redundancia, el código de aplicación tomará directamente el resultado correcto. • Transparencia a la concurrencia: el hecho de que una tarea sea realizada por más o menos bloques es transparente para el código que la invoca. Por lo tanto, esta tesis doctoral contribuye en dos líneas diferentes. En primer lugar, con el diseño de la plataforma HiReCookie y en segundo lugar con el diseño de la arquitectura ARTICo3. Las principales contribuciones de esta tesis se resumen a continuación. • Arquitectura de la HiReCookie incluyendo: o Compatibilidad con la plataforma Cookies para incrementar las capacidades de esta. o División de la arquitectura en distintas islas de alimentación. o Implementación de los diversos modos de bajo consumo y políticas de despertado del nodo. o Creación de un archivo de configuración de la FPGA comprimido para reducir el tiempo y el consumo de la configuración inicial. • Diseño de la arquitectura reconfigurable para FPGAs basadas en RAM ARTICo3: o Modelo de computación y modos de ejecución inspirados en el modelo de CUDA pero basados en hardware reconfigurable con un número variable de bloques de hilos por cada unidad de ejecución. o Estructura para optimizar las transacciones de datos en ráfaga proporcionando datos en cascada o en paralelo a los distinto módulos incluyendo un proceso de votado por mayoría y operaciones de reducción. o Capa de abstracción entre el procesador principal que incluye el código de aplicación y los recursos asignados para las diferentes tareas. o Arquitectura de los módulos hardware reconfigurables para mantener la escalabilidad añadiendo una la interfaz para las nuevas funcionalidades con un simple acceso a una memoria RAM interna. o Caracterización online de las tareas para proporcionar información a un módulo de gestión de recursos para mejorar la operación en términos de energía y procesamiento cuando además se opera entre distintos nieles de tolerancia a fallos. El documento está dividido en dos partes principales formando un total de cinco capítulos. En primer lugar, después de motivar la necesidad de nuevas plataformas para cubrir las nuevas aplicaciones, se detalla el diseño de la plataforma HiReCookie, sus partes, las posibilidades para bajar el consumo energético y se muestran casos de uso de la plataforma así como pruebas de validación del diseño. La segunda parte del documento describe la arquitectura reconfigurable, su implementación en varias FPGAs, y pruebas de validación en términos de capacidad de procesamiento y consumo energético, incluyendo cómo estos aspectos se ven afectados por el nivel de tolerancia a fallos elegido. Los capítulos a lo largo del documento son los siguientes: El capítulo 1 analiza los principales objetivos, motivación y aspectos teóricos necesarios para seguir el resto del documento. El capítulo 2 está centrado en el diseño de la plataforma HiReCookie y sus posibilidades para disminuir el consumo de energía. El capítulo 3 describe la arquitectura reconfigurable ARTICo3. El capítulo 4 se centra en las pruebas de validación de la arquitectura usando la plataforma HiReCookie para la mayoría de los tests. Un ejemplo de aplicación es mostrado para analizar el funcionamiento de la arquitectura. El capítulo 5 concluye esta tesis doctoral comentando las conclusiones obtenidas, las contribuciones originales del trabajo y resultados y líneas futuras. ABSTRACT This PhD Thesis is framed within the field of dynamically reconfigurable embedded systems, advanced sensor networks and distributed computing. The document is centred on the study of processing solutions for high-performance autonomous distributed systems (HPADS) as well as their evolution towards High performance Computing (HPC) systems. The approach of the study is focused on both platform and processor levels to optimise critical aspects such as computing performance, energy efficiency and fault tolerance. HPADS are considered feedback systems, normally networked and/or distributed, with real-time adaptive and predictive functionality. These systems, as part of more complex systems known as Cyber-Physical Systems (CPSs), can be applied in a wide range of fields such as military, health care, manufacturing, aerospace, etc. For the design of HPADS, high levels of dependability, the definition of suitable models of computation, and the use of methodologies and tools to support scalability and complexity management, are required. The first part of the document studies the different possibilities at platform design level in the state of the art, together with description, development and validation tests of the platform proposed in this work to cope with the previously mentioned requirements. The main objectives targeted by this platform design are the following: • Study the feasibility of using SRAM-based FPGAs as the main processor of the platform in terms of energy consumption and performance for high demanding applications. • Analyse and propose energy management techniques to reduce energy consumption in every stage of the working profile of the platform. • Provide a solution with dynamic partial and wireless remote HW reconfiguration (DPR) to be able to change certain parts of the FPGA design at run time and on demand without interrupting the rest of the system. • Demonstrate the applicability of the platform in different test-bench applications. In order to select the best approach for the platform design in terms of processing alternatives, a study of the evolution of the state-of-the-art platforms is required to analyse how different architectures cope with new more demanding applications and scenarios: security, mixed-critical systems for aerospace, multimedia applications, or military environments, among others. In all these scenarios, important changes in the required processing bandwidth or the complexity of the algorithms used are provoking the migration of the platforms from single microprocessor architectures to multiprocessing and heterogeneous solutions with more instant power consumption but higher energy efficiency. Within these solutions, FPGAs and Systems on Chip including FPGA fabric and dedicated hard processors, offer a good trade of among flexibility, processing performance, energy consumption and price, when they are used in demanding applications where working conditions are very likely to vary over time and high complex algorithms are required. The platform architecture proposed in this PhD Thesis is called HiReCookie. It includes an SRAM-based FPGA as the main and only processing unit. The FPGA selected, the Xilinx Spartan-6 LX150, was at the beginning of this work the best choice in terms of amount of resources and power. Although, the power levels are the lowest of these kind of devices, they can be still very high for distributed systems that normally work powered by batteries. For that reason, it is necessary to include different energy saving possibilities to increase the usability of the platform. In order to reduce energy consumption, the platform architecture is divided into different power islands so that only those parts of the systems that are strictly needed are powered on, while the rest of the islands can be completely switched off. This allows a combination of different low power modes to decrease energy. In addition, one of the most important handicaps of SRAM-based FPGAs is that they are not alive at power up. Therefore, recovering the system from a switch-off state requires to reload the FPGA configuration from a non-volatile memory device. For that reason, this PhD Thesis also proposes a methodology to compress the FPGA configuration file in order to reduce time and energy during the initial configuration process. Although some of the requirements for the design of HPADS are already covered by the design of the HiReCookie platform, it is necessary to continue improving energy efficiency, computing performance and fault tolerance. This is only possible by exploiting all the opportunities provided by the processing architectures configured inside the FPGA. Therefore, the second part of the thesis details the design of the so called ARTICo3 FPGA architecture to enhance the already intrinsic capabilities of the FPGA. ARTICo3 is a DPR-capable bus-based virtual architecture for multiple HW acceleration in SRAM-based FPGAs. The architecture provides support for dynamic resource management in real time. In this way, by using DPR, it will be possible to change the levels of computing performance, energy consumption and fault tolerance on demand by increasing or decreasing the amount of resources used by the different tasks. Apart from the detailed design of the architecture and its implementation in different FPGA devices, different validation tests and comparisons are also shown. The main objectives targeted by this FPGA architecture are listed as follows: • Provide a method based on a multithread approach such as those offered by CUDA (Compute Unified Device Architecture) or OpenCL kernel executions, where kernels are executed in a variable number of HW accelerators without requiring application code changes. • Provide an architecture to dynamically adapt working points according to either self-measured or external parameters in terms of energy consumption, fault tolerance and computing performance. Taking advantage of DPR capabilities, the architecture must provide support for a dynamic use of resources in real time. • Exploit concurrent processing capabilities in a standard bus-based system by optimizing data transactions to and from HW accelerators. • Measure the advantage of HW acceleration as a technique to boost performance to improve processing times and save energy by reducing active times for distributed embedded systems. • Dynamically change the levels of HW redundancy to adapt fault tolerance in real time. • Provide HW abstraction from SW application design. FPGAs give the possibility of designing specific HW blocks for every required task to optimise performance while some of them include the possibility of including DPR. Apart from the possibilities provided by manufacturers, the way these HW modules are organised, addressed and multiplexed in area and time can improve computing performance and energy consumption. At the same time, fault tolerance and security techniques can also be dynamically included using DPR. However, the inherent complexity of designing new HW modules for every application is not negligible. It does not only consist of the HW description, but also the design of drivers and interfaces with the rest of the system, while the design space is widened and more complex to define and program. Even though the tools provided by the majority of manufacturers already include predefined bus interfaces, commercial IPs, and templates to ease application prototyping, it is necessary to improve these capabilities. By adding new architectures on top of them, it is possible to take advantage of parallelization and HW redundancy while providing a framework to ease the use of dynamic resource management. ARTICo3 works within a solution space where working points change at run time in a 3D space defined by three different axes: Computation, Consumption, and Fault Tolerance. Therefore, every working point is found as a trade-off solution among these three axes. By means of DPR, different accelerators can be multiplexed so that the amount of available resources for any application is virtually unlimited. Taking advantage of DPR capabilities and a novel way of transmitting data to the reconfigurable HW accelerators, it is possible to dedicate a dynamically-changing number of resources for a given task in order to either boost computing speed or adding HW redundancy and a voting process to increase fault-tolerance levels. At the same time, using an optimised amount of resources for a given task reduces energy consumption by reducing instant power or computing time. In order to keep level complexity under certain limits, it is important that HW changes are transparent for the application code. Therefore, different levels of transparency are targeted by the system: • Scalability transparency: a task must be able to expand its resources without changing the system structure or application algorithms. • Performance transparency: the system must reconfigure itself as load changes. • Replication transparency: multiple instances of the same task are loaded to increase reliability and performance. • Location transparency: resources are accessed with no knowledge of their location by the application code. • Failure transparency: task must be completed despite a failure in some components. • Concurrency transparency: different tasks will work in a concurrent way transparent to the application code. Therefore, as it can be seen, the Thesis is contributing in two different ways. First with the design of the HiReCookie platform and, second with the design of the ARTICo3 architecture. The main contributions of this PhD Thesis are then listed below: • Architecture of the HiReCookie platform including: o Compatibility of the processing layer for high performance applications with the Cookies Wireless Sensor Network platform for fast prototyping and implementation. o A division of the architecture in power islands. o All the different low-power modes. o The creation of the partial-initial bitstream together with the wake-up policies of the node. • The design of the reconfigurable architecture for SRAM FPGAs: ARTICo3: o A model of computation and execution modes inspired in CUDA but based on reconfigurable HW with a dynamic number of thread blocks per kernel. o A structure to optimise burst data transactions providing coalesced or parallel data to HW accelerators, parallel voting process and reduction operation. o The abstraction provided to the host processor with respect to the operation of the kernels in terms of the number of replicas, modes of operation, location in the reconfigurable area and addressing. o The architecture of the modules representing the thread blocks to make the system scalable by adding functional units only adding an access to a BRAM port. o The online characterization of the kernels to provide information to a scheduler or resource manager in terms of energy consumption and processing time when changing among different fault-tolerance levels, as well as if a kernel is expected to work in the memory-bounded or computing-bounded areas. The document of the Thesis is divided into two main parts with a total of five chapters. First, after motivating the need for new platforms to cover new more demanding applications, the design of the HiReCookie platform, its parts and several partial tests are detailed. The design of the platform alone does not cover all the needs of these applications. Therefore, the second part describes the architecture inside the FPGA, called ARTICo3, proposed in this PhD Thesis. The architecture and its implementation are tested in terms of energy consumption and computing performance showing different possibilities to improve fault tolerance and how this impact in energy and time of processing. Chapter 1 shows the main goals of this PhD Thesis and the technology background required to follow the rest of the document. Chapter 2 shows all the details about the design of the FPGA-based platform HiReCookie. Chapter 3 describes the ARTICo3 architecture. Chapter 4 is focused on the validation tests of the ARTICo3 architecture. An application for proof of concept is explained where typical kernels related to image processing and encryption algorithms are used. Further experimental analyses are performed using these kernels. Chapter 5 concludes the document analysing conclusions, comments about the contributions of the work, and some possible future lines for the work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is motivated by a practical application observed at a printed circuit board (PCB) manufacturing facility. After assembly, the PCBs (or jobs) are tested in environmental stress screening (ESS) chambers (or batch processing machines) to detect early failures. Several PCBs can be simultaneously tested as long as the total size of all the PCBs in the batch does not violate the chamber capacity. PCBs from different production lines arrive dynamically to a queue in front of a set of identical ESS chambers, where they are grouped into batches for testing. Each line delivers PCBs that vary in size and require different testing (or processing) times. Once a batch is formed, its processing time is the longest processing time among the PCBs in the batch, and its ready time is given by the PCB arriving last to the batch. ESS chambers are expensive and a bottleneck. Consequently, its makespan has to be minimized. ^ A mixed-integer formulation is proposed for the problem under study and compared to a formulation recently published. The proposed formulation is better in terms of the number of decision variables, linear constraints and run time. A procedure to compute the lower bound is proposed. For sparse problems (i.e. when job ready times are dispersed widely), the lower bounds are close to optimum. ^ The problem under study is NP-hard. Consequently, five heuristics, two metaheuristics (i.e. simulated annealing (SA) and greedy randomized adaptive search procedure (GRASP)), and a decomposition approach (i.e. column generation) are proposed—especially to solve problem instances which require prohibitively long run times when a commercial solver is used. Extensive experimental study was conducted to evaluate the different solution approaches based on the solution quality and run time. ^ The decomposition approach improved the lower bounds (or linear relaxation solution) of the mixed-integer formulation. At least one of the proposed heuristic outperforms the Modified Delay heuristic from the literature. For sparse problems, almost all the heuristics report a solution close to optimum. GRASP outperforms SA at a higher computational cost. The proposed approaches are viable to implement as the run time is very short. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is outlined for optimising graph partitions which arise in mapping unstructured mesh calculations to parallel computers. The method employs a relative gain iterative technique to both evenly balance the workload and minimise the number and volume of interprocessor communications. A parallel graph reduction technique is also briefly described and can be used to give a global perspective to the optimisation. The algorithms work efficiently in parallel as well as sequentially and when combined with a fast direct partitioning technique (such as the Greedy algorithm) to give an initial partition, the resulting two-stage process proves itself to be both a powerful and flexible solution to the static graph-partitioning problem. Experiments indicate that the resulting parallel code can provide high quality partitions, independent of the initial partition, within a few seconds. The algorithms can also be used for dynamic load-balancing, reusing existing partitions and in this case the procedures are much faster than static techniques, provide partitions of similar or higher quality and, in comparison, involve the migration of a fraction of the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scarcity and diversity of resources among the devices of heterogeneous computing environments may affect their ability to perform services with specific Quality of Service constraints, particularly in dynamic distributed environments where the characteristics of the computational load cannot always be predicted in advance. Our work addresses this problem by allowing resource constrained devices to cooperate with more powerful neighbour nodes, opportunistically taking advantage of global distributed resources and processing power. Rather than assuming that the dynamic configuration of this cooperative service executes until it computes its optimal output, the paper proposes an anytime approach that has the ability to tradeoff deliberation time for the quality of the solution. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves at each iteration, with an overhead that can be considered negligible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed real-time systems such as automotive applications are becoming larger and more complex, thus, requiring the use of more powerful hardware and software architectures. Furthermore, those distributed applications commonly have stringent real-time constraints. This implies that such applications would gain in flexibility if they were parallelized and distributed over the system. In this paper, we consider the problem of allocating fixed-priority fork-join Parallel/Distributed real-time tasks onto distributed multi-core nodes connected through a Flexible Time Triggered Switched Ethernet network. We analyze the system requirements and present a set of formulations based on a constraint programming approach. Constraint programming allows us to express the relations between variables in the form of constraints. Our approach is guaranteed to find a feasible solution, if one exists, in contrast to other approaches based on heuristics. Furthermore, approaches based on constraint programming have shown to obtain solutions for these type of formulations in reasonable time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulation has traditionally been used for analyzing the behavior of complex real world problems. Even though only some features of the problems are considered, simulation time tends to become quite high even for common simulation problems. Parallel and distributed simulation is a viable technique for accelerating the simulations. The success of parallel simulation depends heavily on the combination of the simulation application, algorithm and message population in the simulation is sufficient, no additional delay is caused by this environment. In this thesis a conservative, parallel simulation algorithm is applied to the simulation of a cellular network application in a distributed workstation environment. This thesis presents a distributed simulation environment, Diworse, which is based on the use of networked workstations. The distributed environment is considered especially hard for conservative simulation algorithms due to the high cost of communication. In this thesis, however, the distributed environment is shown to be a viable alternative if the amount of communication is kept reasonable. Novel ideas of multiple message simulation and channel reduction enable efficient use of this environment for the simulation of a cellular network application. The distribution of the simulation is based on a modification of the well known Chandy-Misra deadlock avoidance algorithm with null messages. The basic Chandy Misra algorithm is modified by using the null message cancellation and multiple message simulation techniques. The modifications reduce the amount of null messages and the time required for their execution, thus reducing the simulation time required. The null message cancellation technique reduces the processing time of null messages as the arriving null message cancels other non processed null messages. The multiple message simulation forms groups of messages as it simulates several messages before it releases the new created messages. If the message population in the simulation is suffiecient, no additional delay is caused by this operation A new technique for considering the simulation application is also presented. The performance is improved by establishing a neighborhood for the simulation elements. The neighborhood concept is based on a channel reduction technique, where the properties of the application exclusively determine which connections are necessary when a certain accuracy for simulation results is required. Distributed simulation is also analyzed in order to find out the effect of the different elements in the implemented simulation environment. This analysis is performed by using critical path analysis. Critical path analysis allows determination of a lower bound for the simulation time. In this thesis critical times are computed for sequential and parallel traces. The analysis based on sequential traces reveals the parallel properties of the application whereas the analysis based on parallel traces reveals the properties of the environment and the distribution.