717 resultados para Panel Data Estimation
Resumo:
Includes bibliography
Resumo:
Background: Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods: Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results: The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e. g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions: A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country.
Resumo:
There is a consensus in China that industrialization, urbanization, globalization and information technology will enhance China's urban competitiveness. We have developed a methodology for the analysis of urban competitiveness that we have applied to China's 25 principal cities during three periods from 1990 through 2009. Our model uses data for 12 variables, to which we apply appropriate statistical techniques. We are able to examine the competitiveness of inland cities and those on the coast, how this has changed during the two decades of the study, the competitiveness of Mega Cities and of administrative centres, and the importance of each variable in explaining urban competitiveness and its development over time. This analysis will be of benefit to Chinese planners as they seek to enhance the competitiveness of China and its major cities in the future.
Resumo:
A main assumption of social production function theory is that status is a major determinant of subjective well-being (SWB). From the perspective of the dissociative hypothesis, however, upward social mobility may be linked to identity problems, distress, and reduced levels of SWB because upwardly mobile people lose their ties to their class of origin. In this paper, we examine whether or not one of these arguments holds. We employ the United Kingdom and Switzerland as case studies because both are linked to distinct notions regarding social inequality and upward mobility. Longitudinal multilevel analyses based on panel data (UK: BHPS, Switzerland: SHP) allow us to reconstruct individual trajectories of life satisfaction (as a cognitive component of SWB) along with events of intragenerational and intergenerational upward mobility—taking into account previous levels of life satisfaction, dynamic class membership, and well-studied determinants of SWB. Our results show some evidence for effects of social class and social mobility on well-being in the UK sample, while there are no such effects in the Swiss sample. The UK findings support the idea of dissociative effects in terms of a negative effect of intergenerational upward mobility on SWB.
Resumo:
This paper extends the existing research on real estate investment trust (REIT) operating efficiencies. We estimate a stochastic-frontier panel-data model specifying a translog cost function, covering 1995 to 2003. The results disagree with previous research in that we find little evidence of scale economies and some evidence of scale diseconomies. Moreover, we also generally find smaller inefficiencies than those shown by other REIT studies. Contrary to previous research, the results also show that self-management of a REIT associates with more inefficiency when we measure output with assets. When we use revenue to measure output, selfmanagement associates with less inefficiency. Also contrary with previous research, higher leverage associates with more efficiency. The results further suggest that inefficiency increases over time in three of our four specifications.
Resumo:
In September 1999, the International Monetary Fund (IMF) established the Poverty Reduction and Growth Facility (PRGF) to make the reduction of poverty and the enhancement of economic growth the fundamental objectives of lending operations in its poorest member countries. This paper studies the spending and absorption of aid in PRGF-supported programs, verifies whether the use of aid is programmed to be smoothed over time, and analyzes how considerations about macroeconomic stability influence the programmed use of aid. The paper shows that PRGF-supported programs permit countries to utilize all increases in aid within a few years, showing smoothed use of aid inflows over time. Our results reveal that spending is higher than absorption in both the long-run and short-run use of aid, which is a robust finding of the study. Furthermore, the paper demonstrates that the long-run spending exceeds the injected increase of aid inflows in the economy. In addition, the paper finds that the presence of a PRGF-supported program does not influence the actual absorption or spending of aid.
Resumo:
The paper focuses on the recent pattern of government consumption expenditure in developing countries and estimates the determinants which have influenced government expenditure. Using a panel data set for 111 developing countries from 1984 to 2004, this study finds evidence that political and institutional variables as well as governance variables significantly influence government expenditure. Among other results, the paper finds new evidence of Wagner's law which states that peoples' demand for service and willingness to pay is income-elastic hence the expansion of public economy is influenced by the greater economic affluence of a nation (Cameron1978). Corruption is found to be influential in explaining the public expenditure of developing countries. On the contrary, size of the economy and fractionalization are found to have significant negative association with government expenditure. In addition, the study finds evidence that public expenditure significantly shrinks under military dictatorship compared with other form of governance.
Resumo:
Understanding the determinants of tourism demand is crucial for the tourism sector. This paper develops a dynamic panel model to examine the determinants of inbound tourists to Siem Reap airport, Phnom Penh airport, and land and waterway borders in Cambodia. Consistent with the consumer theory of tourism consumption, a 10% increase in the origin country GDP per capita is predicted to increase the number of tourist visits to Siem Reap airport by 5.8%. A 10% increase in the real exchange rate between the origin country and Cambodia is predicted to decrease the number of tourist visits by 0.89%. In contrast, the number of foreign tourists in a previous period has little effect on the number of foreign tourists in the current period. Additionally, the determinants are different by the mode of entry to Cambodia.
Resumo:
Improving the knowledge of demand evolution over time is a key aspect in the evaluation of transport policies and in forecasting future investment needs. It becomes even more critical for the case of toll roads, which in recent decades has become an increasingly common device to fund road projects. However, literature regarding demand elasticity estimates in toll roads is sparse and leaves some important aspects to be analyzed in greater detail. In particular, previous research on traffic analysis does not often disaggregate heavy vehicle demand from the total volume, so that the specific behavioral patternsof this traffic segment are not taken into account. Furthermore, GDP is the main socioeconomic variable most commonly chosen to explain road freight traffic growth over time. This paper seeks to determine the variables that better explain the evolution of heavy vehicle demand in toll roads over time. To that end, we present a dynamic panel data methodology aimed at identifying the key socioeconomic variables that explain the behavior of road freight traffic throughout the years. The results show that, despite the usual practice, GDP may not constitute a suitable explanatory variable for heavy vehicle demand. Rather, considering only the GDP of those sectors with a high impact on transport demand, such as construction or industry, leads to more consistent results. The methodology is applied to Spanish toll roads for the 1990?2011 period. This is an interesting case in the international context, as road freight demand has experienced an even greater reduction in Spain than elsewhere, since the beginning of the economic crisis in 2008.
Resumo:
Tolls have increasingly become a common mechanism to fund road projects in recent decades. Therefore, improving knowledge of demand behavior constitutes a key aspect for stakeholders dealing with the management of toll roads. However, the literature concerning demand elasticity estimates for interurban toll roads is still limited due to their relatively scarce number in the international context. Furthermore, existing research has left some aspects to be investigated, among others, the choice of GDP as the most common socioeconomic variable to explain traffic growth over time. This paper intends to determine the variables that better explain the evolution of light vehicle demand in toll roads throughout the years. To that end, we establish a dynamic panel data methodology aimed at identifying the key socioeconomic variables explaining changes in light vehicle demand over time. The results show that, despite some usefulness, GDP does not constitute the most appropriate explanatory variable, while other parameters such as employment or GDP per capita lead to more stable and consistent results. The methodology is applied to Spanish toll roads for the 1990?2011 period, which constitutes a very interesting case on variations in toll road use, as road demand has experienced a significant decrease since the beginning of the economic crisis in 2008.
Resumo:
We propose a general procedure for solving incomplete data estimation problems. The procedure can be used to find the maximum likelihood estimate or to solve estimating equations in difficult cases such as estimation with the censored or truncated regression model, the nonlinear structural measurement error model, and the random effects model. The procedure is based on the general principle of stochastic approximation and the Markov chain Monte-Carlo method. Applying the theory on adaptive algorithms, we derive conditions under which the proposed procedure converges. Simulation studies also indicate that the proposed procedure consistently converges to the maximum likelihood estimate for the structural measurement error logistic regression model.
Resumo:
This paper deals with the determinants of labour out-migration from agriculture across 149 EU regions over the 1990–2008 period. The central aim is to shed light on the role played by payments from the common agricultural policy (CAP) on this important adjustment process. Using static and dynamic panel data estimators, we show that standard neoclassical drivers, like relative income and the relative labour share, represent significant determinants of the intersectoral migration of agricultural labour. Overall, CAP payments contributed significantly to job creation in agriculture, although the magnitude of the economic effect was rather moderate. We also find that pillar I subsidies exerted an effect approximately two times greater than that of pillar II payments.