948 resultados para Palladium catalyzed


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Areneselenyl or alkaneselenyl magnesium bromide reacts rapidly with diaryliodonium salt to give the corresponding diaryl or alkyl aryl selenide in the presence of catalytic amounts of Pd-(PPh3)4 in good yield.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surfactant templating offers a simple route to synthesize high-surface area silicas with ordered, tunable mesopore architectures. The use of these materials as versatile catalyst supports for palladium nanoparticles has been explored in the aerobic selective oxidation (selox) of allylic alcohols under mild conditions. Families of Pd/mesoporous silicas, synthesized through incipient wetness impregnation of SBA-15, SBA-16, and KIT-6, have been characterized by using nitrogen porosimetry, CO chemisorption, diffuse reflection infrared Fourier transform spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and high-resolution TEM and benchmarked in liquid phase allylic alcohol selox against a Pd/amorphous SiO2 standard. The transition from amorphous to two-dimensional parallel and three-dimensional interpenetrating porous silica networks conferred significant selox rate enhancements associated with higher surface densities of active palladium oxide sites. Dissolved oxygen was essential for insitu stabilization of palladium oxide, and thus maintenance of high activity on-stream, whereas selectivity to the desired aldehyde selox product over competing hydrogenolysis pathways was directed by using palladium metal. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diverse biological properties exhibited by uridine analogues modified at carbon-5 of the uracil base have attracted special interest to the development of efficient methodologies for their synthesis. This study aimed to evaluate the possible application of vinyl tris(trimethylsilyl)germanes in the synthesis of conjugated 5-modified uridine analogues via Pd-catalyzed cross-coupling reactions. The stereoselective synthesis of 5-[(2-tris(trimethylsilyl)germyl)ethenyl]uridine derivatives was achieved by the radical-mediated hydrogermylation of the protected 5-alkynyluridine precursors with tris(trimethylsilyl)germane [(TMS)3GeH]. The hydrogermylation with Ph3GeH afforded in addition to the expected 5-vinylgermane, novel 5-(2-triphenylgermyl)acetyl derivatives. Also, the treatment with Me3GeH provided access to 5-vinylgermane uridine analogues with potential biological applications. Since the Pd-catalyzed cross-coupling of organogermanes has received much less attention than the couplings involving organostannanes and organosilanes, we were prompted to develop novel organogermane precursors suitable for transfer of aryl and/or alkenyl groups. The allyl(phenyl)germanes were found to transfer allyl groups to aryl iodides in the presence of sodium hydroxide or tetrabutylammonium fluoride (TBAF) via a Heck arylation mechanism. On the other hand, the treatment of allyl(phenyl)germanes with tetracyanoethylene (TCNE) effectively cleaved the Ge-C(allyl) bonds and promoted the transfer of the phenyl groups upon fluoride activation in toluene. It was discovered that the trichlorophenyl,- dichlorodiphenyl,- and chlorotriphenylgermanes undergo Pd-catalyzed cross-couplings with aryl bromides and iodides in the presence of TBAF in toluene with addition of the measured amount of water. One chloride ligand on the Ge center allows efficient activation by fluoride to promote transfer of one, two or three phenyl groups from the organogermane precursors. The methodology shows that organogermanes can render a coupling efficiency comparable to the more established stannane and silane counterparts. Our coupling methodology (TBAF/moist toluene) was also found to promote the transfer of multiple phenyl groups from analogous chloro(phenyl)silanes and stannanes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diverse biological properties exhibited by uridine analogues modified at carbon-5 of the uracil base have attracted special interest to the development of efficient methodologies for their synthesis. This study aimed to evaluate the possible application of vinyl tris(trimethylsilyl)germanes in the synthesis of conjugated 5-modified uridine analogues via Pd-catalyzed cross-coupling reactions. The stereoselective synthesis of 5-[(2-tris(trimethylsilyl)germyl)ethenyl]uridine derivatives was achieved by the radical-mediated hydrogermylation of the protected 5-alkynyluridine precursors with tris(trimethylsilyl)germane [(TMS)3GeH]. The hydrogermylation with Ph3GeH afforded in addition to the expected 5-vinylgermane, novel 5-(2-triphenylgermyl)acetyl derivatives. Also, the treatment with Me3GeH provided access to 5-vinylgermane uridine analogues with potential biological applications. Since the Pd-catalyzed cross-coupling of organogermanes has received much less attention than the couplings involving organostannanes and organosilanes, we were prompted to develop novel organogermane precursors suitable for transfer of aryl and/or alkenyl groups. The allyl(phenyl)germanes were found to transfer allyl groups to aryl iodides in the presence of sodium hydroxide or tetrabutylammonium fluoride (TBAF) via a Heck arylation mechanism. On the other hand, the treatment of allyl(phenyl)germanes with tetracyanoethylene (TCNE) effectively cleaved the Ge-C(allyl) bonds and promoted the transfer of the phenyl groups upon fluoride activation in toluene. It was discovered that the trichlorophenyl,- dichlorodiphenyl,- and chlorotriphenylgermanes undergo Pd-catalyzed cross-couplings with aryl bromides and iodides in the presence of TBAF in toluene with addition of the measured amount of water. One chloride ligand on the Ge center allows efficient activation by fluoride to promote transfer of one, two or three phenyl groups from the organogermane precursors. The methodology shows that organogermanes can render a coupling efficiency comparable to the more established stannane and silane counterparts. Our coupling methodology (TBAF/moist toluene) was also found to promote the transfer of multiple phenyl groups from analogous chloro(phenyl)silanes and stannanes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dihydronaphthalenes were oxyarylated with o-iodophenols, in PEG-400 at 140 or 170 °C, leading regio- and stereoselectively to 5-carbapterocarpans. By using Pd(OAc)2 (5–10 mol%) as precatalyst and Ag2CO3 (1.1 equiv) as base (conditions A), products were obtained in good to excellent chemical yields, in 5–30 minutes, irrespective of the pattern of substitution the starting materials. Alternatively, when p-hydroxyacetophenone oxime derived palladacycle (1 mol%) was used as precatalyst, and dicyclohexylamine (2 equiv) was used as base (silver-free, conditions B), the corresponding adducts were obtained in moderate to good yields, in 0.5 to 4 hours. Finally, the oxyarylation of dihydronaphthalenes­ and chromenquinone with o-iodophenols and 3-iodolawsone in PEG-400 under conditions A led regio- and stereoselectively to the formation of carbapterocarpanquinones and pterocarpanquinones in moderate yield.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reaction mechanism of the Pd(0)-catalyzed alkyne cyanothiolation reaction is investigated by MP2, CCSD(T) and the density functional method B3LYP. The overall reaction mechanism is examined. The B3LYP results are consistent with the results of CCSD(T) and MP2 methods for the isomerization, acetylene insertion and reductive elimination steps, but not for the oxidative addition step. For the oxidative addition, the bisphosphine and monophosphine pathways are competitive in B3LYP, while the bisphosphine one is preferred for CCSD(T) and MP2 methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The palladium-catalyzed copolymerization of styrene and CO in an ionic liquid solvent, 1-hexylpyridinium bis(trifluoromethanesulfonyl) imide, gave improved yields and increased molecular weights compared to polymerizations run in methanol.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Some novel ferrocenylphosphine-amidine ligands with central and planar chirality were prepared from (R,S-p)-PPFNH2-R 3 and its diastereomer (S,S-p)-PPFNH2 3a. The efficiency and diastereomeric impact of these ferrocenylphosphine-amidine ligands in the palladium-catalyzed asymmetric allylic substitution was examined, and up to 96% e.e. with 98% yield was achieved by the use of ligand (R,S-p)-4a with a methyl group in the amidino moiety. The results also indicated that (R)-central chirality and (S-p)-planar chirality in these ferrocenylphosphine-amidine ligands were matched for the palladium-catalyzed asymmetric allylic alkylation. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two novel bis(amine anhydride) monomers, N,N'-bis(3,4-dicarboxyphenyl)-1,4-phenylenediamine dianhydride I and N,/N'-bis(3,4-dicarboxyphenyl)-1,3-phenylenediamine dianhydride 11, were prepared via palladium-catalyzed amination reaction of 4-chloro-N-methylphthaliniide with 1,4-phenylenediamine or 1,3-phenylenediamine, followed by alkaline hydrolysis of the intermediate bis(amine imide)s and subsequent dehydration of the resulting tetraacids. A series of new poly(amine imide)s were prepared from the synthesized dianhydride monomers with various diamines in NMP via conventional two-step method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A highly efficient palladium-catalyzed Suzuki coupling of aryl bromides with aiylboronic acids using phosphoramidite ligand 2c was developed. The phosphoramidite ligands are cost-effective and easily prepared from inexpensive, commercially available starting materials using a simple, efficient method. It represents an advance toward the discovery of low-cost catalyst systems for eventual availability. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A highly efficient palladium catalyzed decarboxylative allylic rearrangement of alloc indoles has been developed. This can also be combined with a Suzuki–Miyaura cross-coupling reaction in a single pot transformation. Substituted alloc groups and benzylic variants have also been demonstrated alongside promising initial results on the enantioselective variant.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Au cours de la dernière décennie, le domaine de la fonctionnalisation directe des liens C–H a connu un intérêt croissant, en raison de la demande de processus chimiques moins dispendieux, plus efficaces et plus écologiques. . Les cyclopropanes représentent un motif structural souvent retrouvé dans des agents biologiquement actifs importants et dans des intermédiaires de synthèse permettant l'accès à des architectures complexes. Malgré leur valeur intrinsèque, la fonctionnalisation directe des cyclopropanes n’a pas été largement explorée. Ce mémoire traitera de deux méthodologies liées, mais tout aussi différentes, impliquant la fonctionnalisation directe des liens C–H cyclopropaniques impliquant des réactions intramoléculaires catalysées par un complex de palladium et assistées par l’argent. Le premier chapitre présentera d’abord un bref survol de la littérature sur les fondements de la fonctionnalisation directe ainsi que les contributions majeures réalisées dans ce domaine. L’accent sera notamment mis sur la fonctionnalisation des centres sp3 et sera souligné par des exemples pertinents. Les découvertes clés concernant le mécanisme et les cycles catalytiques de ces processus seront discutées. Le second chapitre décrira comment les 2-bromoanilides peuvent être utilisés pour accéder à des motifs particuliers de type spiro 3,3’ oxindoles cyclopropyliques. L'optimisation et l’étendue de la réaction seront abordés, suivis par des études mécanistiques réfutant l’hypothèse de la formation d’un intermédiaire palladium-énolate. Ces études mécanistiques comprennent une étude cinétique de l'effet isotopique ainsi que des études sur épimérisation; celles-ci ont confirmé que la réaction se produit par arylation directe. Sur la base des résultats obtenus dans le deuxième chapitre, nous aborderons ensuite la fonctionnalisation directe des benzamides cyclopropyliques lesquels, après une ouverture de cycle, donneront de nouveaux produits benzo [c] azépine-1-ones (chapitre trois). Après avoir présenté une brève optimisation et l’étendue de la réaction, nous discuterons des études mécanistiques impliquées à déduire l'ordre des événements dans le cycle catalytique et à déterminer le rôle des réactifs. Celles-ci permetteront de conclure que la fonctionnalisation de l’unité cyclopropyle se produit avant l’ouverture de cycle et que l'acétate est responsable de la déprotonation-métalation concertée. Le dernier chapitre (chapitre quatre) traitera en rétrospective de ce qui a été appris à partir de deux méthodologies divergentes et connexes et de comment ces résultats peuvent être exploités pour explorer d’autres types de fonctionnalisations directes sur des cyclopropanes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Palladium-catalyzed Heck alkynylation cross-coupling reactions between terminal alkynes and deactivated aryl chlorides and aryl bromides can be performed in the absence of copper cocatalyst with water as solvent at 130 °C under microwave irradiation. An oxime-derived chloro-bridged palladacycle is an efficient precatalyst for this transformation with 2-dicyclohexylphosphanyl-2′,4′,6′-triisopropylbiphenyl (XPhos) as ancillary ligand, pyrrolidine as base, and SBDS as surfactant. All of the reactions can be performed under air and with reagent-grade chemicals under low loading conditions (0.1–1 mol-% Pd).