938 resultados para Page Rank
Resumo:
Recovering the motion of a non-rigid body from a set of monocular images permits the analysis of dynamic scenes in uncontrolled environments. However, the extension of factorisation algorithms for rigid structure from motion to the low-rank non-rigid case has proved challenging. This stems from the comparatively hard problem of finding a linear “corrective transform” which recovers the projection and structure matrices from an ambiguous factorisation. We elucidate that this greater difficulty is due to the need to find multiple solutions to a non-trivial problem, casting a number of previous approaches as alleviating this issue by either a) introducing constraints on the basis, making the problems nonidentical, or b) incorporating heuristics to encourage a diverse set of solutions, making the problems inter-dependent. While it has previously been recognised that finding a single solution to this problem is sufficient to estimate cameras, we show that it is possible to bootstrap this partial solution to find the complete transform in closed-form. However, we acknowledge that our method minimises an algebraic error and is thus inherently sensitive to deviation from the low-rank model. We compare our closed-form solution for non-rigid structure with known cameras to the closed-form solution of Dai et al. [1], which we find to produce only coplanar reconstructions. We therefore make the recommendation that 3D reconstruction error always be measured relative to a trivial reconstruction such as a planar one.
Resumo:
Digital image
Resumo:
Digital image
Resumo:
A simple yet efficient method for the minimization of incompletely specified sequential machines (ISSMs) is proposed. Precise theorems are developed, as a consequence of which several compatibles can be deleted from consideration at the very first stage in the search for a minimal closed cover. Thus, the computational work is significantly reduced. Initial cardinality of the minimal closed cover is further reduced by a consideration of the maximal compatibles (MC's) only; as a result the method converges to the solution faster than the existing procedures. "Rank" of a compatible is defined. It is shown that ordering the compatibles, in accordance with their rank, reduces the number of comparisons to be made in the search for exclusion of compatibles. The new method is simple, systematic, and programmable. It does not involve any heuristics or intuitive procedures. For small- and medium-sized machines, it canle used for hand computation as well. For one of the illustrative examples used in this paper, 30 out of 40 compatibles can be ignored in accordance with the proposed rules and the remaining 10 compatibles only need be considered for obtaining a minimal solution.
Resumo:
A rank-augmnented LU-algorithm is suggested for computing a generalized inverse of a matrix. Initially suitable diagonal corrections are introduced in (the symmetrized form of) the given matrix to facilitate decomposition; a backward-correction scheme then yields a desired generalized inverse.
Resumo:
The increased availability of image capturing devices has enabled collections of digital images to rapidly expand in both size and diversity. This has created a constantly growing need for efficient and effective image browsing, searching, and retrieval tools. Pseudo-relevance feedback (PRF) has proven to be an effective mechanism for improving retrieval accuracy. An original, simple yet effective rank-based PRF mechanism (RB-PRF) that takes into account the initial rank order of each image to improve retrieval accuracy is proposed. This RB-PRF mechanism innovates by making use of binary image signatures to improve retrieval precision by promoting images similar to highly ranked images and demoting images similar to lower ranked images. Empirical evaluations based on standard benchmarks, namely Wang, Oliva & Torralba, and Corel datasets demonstrate the effectiveness of the proposed RB-PRF mechanism in image retrieval.
Resumo:
The likelihood ratio test of cointegration rank is the most widely used test for cointegration. Many studies have shown that its finite sample distribution is not well approximated by the limiting distribution. The article introduces and evaluates by Monte Carlo simulation experiments bootstrap and fast double bootstrap (FDB) algorithms for the likelihood ratio test. It finds that the performance of the bootstrap test is very good. The more sophisticated FDB produces a further improvement in cases where the performance of the asymptotic test is very unsatisfactory and the ordinary bootstrap does not work as well as it might. Furthermore, the Monte Carlo simulations provide a number of guidelines on when the bootstrap and FDB tests can be expected to work well. Finally, the tests are applied to US interest rates and international stock prices series. It is found that the asymptotic test tends to overestimate the cointegration rank, while the bootstrap and FDB tests choose the correct cointegration rank.
Resumo:
Extraction of text areas from the document images with complex content and layout is one of the challenging tasks. Few texture based techniques have already been proposed for extraction of such text blocks. Most of such techniques are greedy for computation time and hence are far from being realizable for real time implementation. In this work, we propose a modification to two of the existing texture based techniques to reduce the computation. This is accomplished with Harris corner detectors. The efficiency of these two textures based algorithms, one based on Gabor filters and other on log-polar wavelet signature, are compared. A combination of Gabor feature based texture classification performed on a smaller set of Harris corner detected points is observed to deliver the accuracy and efficiency.
Resumo:
Bootstrap likelihood ratio tests of cointegration rank are commonly used because they tend to have rejection probabilities that are closer to the nominal level than the rejection probabilities of the correspond- ing asymptotic tests. The e¤ect of bootstrapping the test on its power is largely unknown. We show that a new computationally inexpensive procedure can be applied to the estimation of the power function of the bootstrap test of cointegration rank. The bootstrap test is found to have a power function close to that of the level-adjusted asymp- totic test. The bootstrap test estimates the level-adjusted power of the asymptotic test highly accurately. The bootstrap test may have low power to reject the null hypothesis of cointegration rank zero, or underestimate the cointegration rank. An empirical application to Euribor interest rates is provided as an illustration of the findings.