998 resultados para PULP CELLS
Resumo:
Objectives: Evaluate the cytotoxic effect of the three dental adhesive systems. Methods: The immortalized mouse odontoblast cell line (MDPC-23) was plated (30,000 cell/cm 2) in 24 well dishes, allowed to grow for 72 h, and counted under inverted light microscopy. Uncured fresh adhesives were added to culture medium to simulate effects of unset adhesive. Three adhesives systems were applied for 120 min to cells in six wells for each group: Group 1) Single Bond (3M), Group 2) Prime & Bond 2.1 (Dentsply), and Group 3) Syntac Sprint (Vivadent). In the control group, PBS was added to fresh medium. The cell number was counted again and the cell morphology was assessed under SEM. In addition, the adhesive systems were applied to circles of filter paper, light-cured for 20 s, and placed in the bottom of 24 wells (six wells for each experimental materials and control group). MDPC-23 cells were plated (30,000 cell/cm 2) in the wells and allowed to incubate for 72 h. The zone of inhibition around the filter papers was measured under inverted light microscopy; cell morphology was evaluated under SEM; and the MTT assay was performed for mitochondrial respiration. Results: The fresh adhesives exhibited more toxic (cytopathic effects) to MDPC-23 cells than polymerized adhesives on filter papers, and as compared to the control group. The cytopathic effect of the adhesive systems occurred in the inhibition zone around the filter papers, which was confirmed by the MTT assay and statistical analysis (ANOVA) combined with Fisher's PLSD test. In the control group, MDPC-23 cells were dense on the plastic substrate and were in contact with the filter paper. In the experimental groups, when acid in the adhesive systems was removed by changing the culture medium, or when the adhesives were light-cured, some cells grew in the wells in spite of the persistent cytotoxic effect. Significance: All dentin adhesive systems were cytotoxic odontoblast-like cells. Both acidity and non-acidic components of these systems were responsible for the high cytopathic effect of those dental materials. © 1999 Academy of Dental Materials. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Objective: The aim of this study was to evaluate the human pulp response following direct pulp capping with a current self-etching bonding agent and calcium hydroxide (CH). Methods: Thirty-three sound human premolars had their pulp tissue mechanically exposed. Sterile distilled water was used to control the hemorrhage and exudation from the pulp exposure site. The pulps were capped with Clearfil Liner Bond 2 (CLB-2) or CH and the cavities were filled with a resin composite (Z-100) according to the manufacturer's instructions. After 5, 30 and 120-300 days, the teeth were extracted and processed for microscopic examination. Results: At short-term, CLB-2 elicited a mild to moderate inflammatory pulp response with dilated and congested blood vessels adjacent to pulp exposure site. With time, macrophages and giant cells engulfing globules and particulates of resinous material displaced into the pulp space were observed. This chronic inflammatory pulp response triggered by fragments of bonding agent displaced into the pulp space did not allow pulp repair interfering with the dentin bridging. On the other hand, pulps capped with CH exhibited an initial organization of elongated pulp cells underneath the coagulation necrosis. Pulp repair and complete dentin bridge formation was observed at long-term evaluation. Significance: The present study demonstrated that CH remains the pulp capping agent of choice for mechanically exposed human pulps. CLB-2 did not allow complete connective tissue repair adjacent to the pulp exposure site. Consequently, this bonding agent cannot be recommended for pulp therapy of sound human teeth. © 2001 Academy of Dental Materials. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Objective: The aim of this in vitro study was to evaluate the cytotoxicity of resin-modified glass-ionomer lining cements submitted to different curing regimes and applied to an immortalized odontoblast-cell line (MDPC-23). Methods: Forty round-shaped specimens of each experimental material (Fuji Lining LC and Vitrebond) were prepared. They were light-cured for the manufacturers' recommended time (MRT = 30 s), under-cured (0.5 MRT = 15 s), over-cured (1.5 MRT = 45 s) or allowed to dark cure (0 MRT). Sterilized filter papers soaked with either 5 μL of PBS or HEMA were used as negative and positive control, respectively. After placing the specimens individually in wells of 24-well dishes, odontoblast-like cells MDPC-23 (30,000 cells/cm2) were plated in each well and incubated for 72 h in a humidified incubator at 37 °C with 5% CO2 and 95% air. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). Results: Fuji Lining LC was less cytotoxic than Vitrebond (p < 0.05) in all the experimental conditions. However, the cytotoxicity of Fuji Lining LC was noticeably increased in the absence of light-curing while the same was not observed for Vitrebond. The length of light-curing (15, 30 or 45 s) did not influence the toxicity of both lining materials when they were applied on the odontoblast-cell line MDPC-23. Significance: The light-activation plays an important role in reducing the cytotoxicity of Fuji Lining LC. Following the manufacturer' recommendation regarding the light-curing regime may prevent toxic effect to the pulp cells. © 2005 Academy of Dental Materials.
Resumo:
Low-level laser therapy (LLLT) has been used for the treatment of dentinal hypersensitivity. However, the specific LLL dose and the response mechanisms of these cells to transdentinal irradiation have not yet been demonstrated. Therefore, this study evaluated the transdentinal effects of different LLL doses on stressed odontoblast-like pulp cells MDPC-23 seeded onto the pulpal side of dentin discs obtained from human third molars. The discs were placed in devices simulating in vitro pulp chambers and the whole set was placed in 24-well plates containing plain culture medium (DMEM). After 24 h incubation, the culture medium was replaced by fresh DMEM supplemented with either 5% (simulating a nutritional stress condition) or 10% fetal bovine serum (FBS). The cells were irradiated with doses of 15 and 25 J cm-2 every 24 h, totaling three applications over three consecutive days. The cells in the control groups were removed from the incubator for the same times as used in their respective experimental groups for irradiation, though without activating the laser source (sham irradiation). After 72 h of the last active or sham irradiation, the cells were evaluated with respect to succinic dehydrogenase (SDH) enzyme production (MTT assay), total protein (TP) expression, alkaline phosphatase (ALP) synthesis, reverse transcriptase polymerase chain reaction (RT-PCR) for collagen type 1 (Col-I) and ALP, and morphology (SEM). For both tests, significantly higher values were obtained for the 25 J cm-2 dose. Regarding SDH production, supplementation of the culture medium with 5% FBS provided better results. For TP and ALP expression, the 25 J cm-2 presented higher values, especially for the 5% FBS concentration (Mann-Whitney p < 0.05). Under the tested conditions, near infrared laser irradiation at 25 J cm -2 caused transdentinal biostimulation of odontoblast-like MDPC-23 cells. © 2013 Astro Ltd.
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
The study of the dental pulp can be extended from factors related to its aggression to those related to new concepts of regeneration. The purpose of this compilation of studies is to present the evolution of a research subject from damage to repair. Innitially, studies will demonstrate the ability of dental procedures to generate heat and consequently affect the dental pulp. In sequence, studies will also present some effects of different pulp capping materials on dental pulp cells, related to the cytotoxicity of these materials and inflammatory potential. Finally, as the subject is emmerging and gaining importance in the literature, this compilation will present data from recent studies on the role of dental pulp progenitor cells in the regeneration and repair of dental pulp, as well as an alternative for a scaffold that could be used for clinical translation of research in the field. In summary, dentists must be aware of these different aspects and that the knowledge on factors and mechanisms involved in the aggression of the dental pulp can also serve as basis for understanding aspects for regeneration.
Resumo:
Besides possessing good mechanical properties, dental materials should present a good biological behavior and should not injure the involved tissues. Bond strength and biocompatibility are both highly significant properties of dentin adhesives. For that matter, these properties of four generations of adhesive systems (Multi-Purpose/Single Bond/SE Plus/Easy Bond) were evaluated.Eighty bovine teeth had their dentin exposed (500- and 200-mu m thickness). Adhesive was applied on the dentin layer of each specimen. Following that, the microshearing test was performed for all samples. A dentin barrier test was used for the cytotoxicity evaluation. Cell cultures (SV3NeoB) were collected from testing materials by means of 200- or 500-mu m-thick dentin slices and placed in a cell culture perfusion chamber. Cell viability was measured 24 h post-exposition by means of a photometrical test (MTT test).The best bonding performance was shown by the single-step adhesive Easy Bond (21 MPa, 200 mu m; 27 MPa, 500 mu m) followed by Single Bond (15.6 MPa, 200 mu m; 23.4 MPa, 500 mu m), SE Plus (18.2 MPa, 200 mu m; 20 MPa, 500 mu m), and Multi-Purpose (15.2 MPa, 200 mu m; 17.9 MPa, 500 mu m). Regarding the cytotoxicity, Multi-Purpose slightly reduced the cell viability to 92 % (200 mu m)/93 % (500 mu m). Single Bond was reasonably cytotoxic, reducing cell viability to 71 % (200 mu m)/64 % (500 mu m). The self-etching adhesive Scotchbond SE decreased cell viability to 85 % (200 mu m)/71 % (500 mu m). Conversely, Easy Bond did not reduce cell viability in this test, regardless of the dentin thickness.Results showed that the one-step system had the best bond strength performance and was the least toxic to pulp cells. In multiple-step systems, a correct bonding technique must be done, and a pulp capping strategy is necessary for achieving good performance in both properties.The study showed a promising system (one-step self-etching), referring to it as a good alternative for specific cases, mainly due to its technical simplicity and good biological responses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)